snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_ridge".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KernelRidge(BaseTransformer):
57
58
  r"""Kernel ridge regression
58
59
  For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
@@ -60,6 +61,51 @@ class KernelRidge(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float or array-like of shape (n_targets,), default=1.0
64
110
  Regularization strength; must be a positive float. Regularization
65
111
  improves the conditioning of the problem and reduces the variance of
@@ -100,42 +146,6 @@ class KernelRidge(BaseTransformer):
100
146
  kernel_params: dict, default=None
101
147
  Additional parameters (keyword arguments) for kernel function passed
102
148
  as callable object.
103
-
104
- input_cols: Optional[Union[str, List[str]]]
105
- A string or list of strings representing column names that contain features.
106
- If this parameter is not specified, all columns in the input DataFrame except
107
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
108
- parameters are considered input columns.
109
-
110
- label_cols: Optional[Union[str, List[str]]]
111
- A string or list of strings representing column names that contain labels.
112
- This is a required param for estimators, as there is no way to infer these
113
- columns. If this parameter is not specified, then object is fitted without
114
- labels (like a transformer).
115
-
116
- output_cols: Optional[Union[str, List[str]]]
117
- A string or list of strings representing column names that will store the
118
- output of predict and transform operations. The length of output_cols must
119
- match the expected number of output columns from the specific estimator or
120
- transformer class used.
121
- If this parameter is not specified, output column names are derived by
122
- adding an OUTPUT_ prefix to the label column names. These inferred output
123
- column names work for estimator's predict() method, but output_cols must
124
- be set explicitly for transformers.
125
-
126
- sample_weight_col: Optional[str]
127
- A string representing the column name containing the sample weights.
128
- This argument is only required when working with weighted datasets.
129
-
130
- passthrough_cols: Optional[Union[str, List[str]]]
131
- A string or a list of strings indicating column names to be excluded from any
132
- operations (such as train, transform, or inference). These specified column(s)
133
- will remain untouched throughout the process. This option is helpful in scenarios
134
- requiring automatic input_cols inference, but need to avoid using specific
135
- columns, like index columns, during training or inference.
136
-
137
- drop_input_cols: Optional[bool], default=False
138
- If set, the response of predict(), transform() methods will not contain input columns.
139
149
  """
140
150
 
141
151
  def __init__( # type: ignore[no-untyped-def]
@@ -162,7 +172,7 @@ class KernelRidge(BaseTransformer):
162
172
  self.set_passthrough_cols(passthrough_cols)
163
173
  self.set_drop_input_cols(drop_input_cols)
164
174
  self.set_sample_weight_col(sample_weight_col)
165
- deps = set(SklearnWrapperProvider().dependencies)
175
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
166
176
 
167
177
  self._deps = list(deps)
168
178
 
@@ -176,13 +186,14 @@ class KernelRidge(BaseTransformer):
176
186
  args=init_args,
177
187
  klass=sklearn.kernel_ridge.KernelRidge
178
188
  )
179
- self._sklearn_object = sklearn.kernel_ridge.KernelRidge(
189
+ self._sklearn_object: Any = sklearn.kernel_ridge.KernelRidge(
180
190
  **cleaned_up_init_args,
181
191
  )
182
192
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
183
193
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
184
194
  self._snowpark_cols: Optional[List[str]] = self.input_cols
185
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
195
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
196
+ self._autogenerated = True
186
197
 
187
198
  def _get_rand_id(self) -> str:
188
199
  """
@@ -238,54 +249,48 @@ class KernelRidge(BaseTransformer):
238
249
  self
239
250
  """
240
251
  self._infer_input_output_cols(dataset)
241
- if isinstance(dataset, pd.DataFrame):
242
- assert self._sklearn_object is not None # keep mypy happy
243
- self._sklearn_object = self._handlers.fit_pandas(
244
- dataset,
245
- self._sklearn_object,
246
- self.input_cols,
247
- self.label_cols,
248
- self.sample_weight_col
249
- )
250
- elif isinstance(dataset, DataFrame):
251
- self._fit_snowpark(dataset)
252
- else:
253
- raise TypeError(
254
- f"Unexpected dataset type: {type(dataset)}."
255
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
256
- )
252
+ if isinstance(dataset, DataFrame):
253
+ session = dataset._session
254
+ assert session is not None # keep mypy happy
255
+ # Validate that key package version in user workspace are supported in snowflake conda channel
256
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
257
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
258
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
259
+
260
+ # Specify input columns so column pruning will be enforced
261
+ selected_cols = self._get_active_columns()
262
+ if len(selected_cols) > 0:
263
+ dataset = dataset.select(selected_cols)
264
+
265
+ self._snowpark_cols = dataset.select(self.input_cols).columns
266
+
267
+ # If we are already in a stored procedure, no need to kick off another one.
268
+ if SNOWML_SPROC_ENV in os.environ:
269
+ statement_params = telemetry.get_function_usage_statement_params(
270
+ project=_PROJECT,
271
+ subproject=_SUBPROJECT,
272
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelRidge.__class__.__name__),
273
+ api_calls=[Session.call],
274
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
275
+ )
276
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
277
+ pd_df.columns = dataset.columns
278
+ dataset = pd_df
279
+
280
+ model_trainer = ModelTrainerBuilder.build(
281
+ estimator=self._sklearn_object,
282
+ dataset=dataset,
283
+ input_cols=self.input_cols,
284
+ label_cols=self.label_cols,
285
+ sample_weight_col=self.sample_weight_col,
286
+ autogenerated=self._autogenerated,
287
+ subproject=_SUBPROJECT
288
+ )
289
+ self._sklearn_object = model_trainer.train()
257
290
  self._is_fitted = True
258
291
  self._get_model_signatures(dataset)
259
292
  return self
260
293
 
261
- def _fit_snowpark(self, dataset: DataFrame) -> None:
262
- session = dataset._session
263
- assert session is not None # keep mypy happy
264
- # Validate that key package version in user workspace are supported in snowflake conda channel
265
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
266
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
267
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
268
-
269
- # Specify input columns so column pruning will be enforced
270
- selected_cols = self._get_active_columns()
271
- if len(selected_cols) > 0:
272
- dataset = dataset.select(selected_cols)
273
-
274
- estimator = self._sklearn_object
275
- assert estimator is not None # Keep mypy happy
276
-
277
- self._snowpark_cols = dataset.select(self.input_cols).columns
278
-
279
- self._sklearn_object = self._handlers.fit_snowpark(
280
- dataset,
281
- session,
282
- estimator,
283
- ["snowflake-snowpark-python"] + self._get_dependencies(),
284
- self.input_cols,
285
- self.label_cols,
286
- self.sample_weight_col,
287
- )
288
-
289
294
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
290
295
  if self._drop_input_cols:
291
296
  return []
@@ -473,11 +478,6 @@ class KernelRidge(BaseTransformer):
473
478
  subproject=_SUBPROJECT,
474
479
  custom_tags=dict([("autogen", True)]),
475
480
  )
476
- @telemetry.add_stmt_params_to_df(
477
- project=_PROJECT,
478
- subproject=_SUBPROJECT,
479
- custom_tags=dict([("autogen", True)]),
480
- )
481
481
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
482
482
  """Predict using the kernel ridge model
483
483
  For more details on this function, see [sklearn.kernel_ridge.KernelRidge.predict]
@@ -531,11 +531,6 @@ class KernelRidge(BaseTransformer):
531
531
  subproject=_SUBPROJECT,
532
532
  custom_tags=dict([("autogen", True)]),
533
533
  )
534
- @telemetry.add_stmt_params_to_df(
535
- project=_PROJECT,
536
- subproject=_SUBPROJECT,
537
- custom_tags=dict([("autogen", True)]),
538
- )
539
534
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
540
535
  """Method not supported for this class.
541
536
 
@@ -592,7 +587,8 @@ class KernelRidge(BaseTransformer):
592
587
  if False:
593
588
  self.fit(dataset)
594
589
  assert self._sklearn_object is not None
595
- return self._sklearn_object.labels_
590
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
591
+ return labels
596
592
  else:
597
593
  raise NotImplementedError
598
594
 
@@ -628,6 +624,7 @@ class KernelRidge(BaseTransformer):
628
624
  output_cols = []
629
625
 
630
626
  # Make sure column names are valid snowflake identifiers.
627
+ assert output_cols is not None # Make MyPy happy
631
628
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
632
629
 
633
630
  return rv
@@ -638,11 +635,6 @@ class KernelRidge(BaseTransformer):
638
635
  subproject=_SUBPROJECT,
639
636
  custom_tags=dict([("autogen", True)]),
640
637
  )
641
- @telemetry.add_stmt_params_to_df(
642
- project=_PROJECT,
643
- subproject=_SUBPROJECT,
644
- custom_tags=dict([("autogen", True)]),
645
- )
646
638
  def predict_proba(
647
639
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
648
640
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -683,11 +675,6 @@ class KernelRidge(BaseTransformer):
683
675
  subproject=_SUBPROJECT,
684
676
  custom_tags=dict([("autogen", True)]),
685
677
  )
686
- @telemetry.add_stmt_params_to_df(
687
- project=_PROJECT,
688
- subproject=_SUBPROJECT,
689
- custom_tags=dict([("autogen", True)]),
690
- )
691
678
  def predict_log_proba(
692
679
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
693
680
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -724,16 +711,6 @@ class KernelRidge(BaseTransformer):
724
711
  return output_df
725
712
 
726
713
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
727
- @telemetry.send_api_usage_telemetry(
728
- project=_PROJECT,
729
- subproject=_SUBPROJECT,
730
- custom_tags=dict([("autogen", True)]),
731
- )
732
- @telemetry.add_stmt_params_to_df(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
714
  def decision_function(
738
715
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
739
716
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -834,11 +811,6 @@ class KernelRidge(BaseTransformer):
834
811
  subproject=_SUBPROJECT,
835
812
  custom_tags=dict([("autogen", True)]),
836
813
  )
837
- @telemetry.add_stmt_params_to_df(
838
- project=_PROJECT,
839
- subproject=_SUBPROJECT,
840
- custom_tags=dict([("autogen", True)]),
841
- )
842
814
  def kneighbors(
843
815
  self,
844
816
  dataset: Union[DataFrame, pd.DataFrame],
@@ -898,9 +870,9 @@ class KernelRidge(BaseTransformer):
898
870
  # For classifier, the type of predict is the same as the type of label
899
871
  if self._sklearn_object._estimator_type == 'classifier':
900
872
  # label columns is the desired type for output
901
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
873
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
902
874
  # rename the output columns
903
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
875
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
904
876
  self._model_signature_dict["predict"] = ModelSignature(inputs,
905
877
  ([] if self._drop_input_cols else inputs)
906
878
  + outputs)
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import LightGBMWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class LGBMClassifier(BaseTransformer):
56
57
  r"""LightGBM classifier
57
58
  For more details on this class, see [lightgbm.LGBMClassifier]
@@ -64,34 +65,42 @@ class LGBMClassifier(BaseTransformer):
64
65
  A string or list of strings representing column names that contain features.
65
66
  If this parameter is not specified, all columns in the input DataFrame except
66
67
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
67
- parameters are considered input columns.
68
-
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
69
71
  label_cols: Optional[Union[str, List[str]]]
70
72
  A string or list of strings representing column names that contain labels.
71
- This is a required param for estimators, as there is no way to infer these
72
- columns. If this parameter is not specified, then object is fitted without
73
- labels (like a transformer).
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
74
75
 
75
76
  output_cols: Optional[Union[str, List[str]]]
76
77
  A string or list of strings representing column names that will store the
77
78
  output of predict and transform operations. The length of output_cols must
78
- match the expected number of output columns from the specific estimator or
79
+ match the expected number of output columns from the specific predictor or
79
80
  transformer class used.
80
- If this parameter is not specified, output column names are derived by
81
- adding an OUTPUT_ prefix to the label column names. These inferred output
82
- column names work for estimator's predict() method, but output_cols must
83
- be set explicitly for transformers.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
84
90
 
85
91
  sample_weight_col: Optional[str]
86
92
  A string representing the column name containing the sample weights.
87
- This argument is only required when working with weighted datasets.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
88
96
 
89
97
  passthrough_cols: Optional[Union[str, List[str]]]
90
98
  A string or a list of strings indicating column names to be excluded from any
91
99
  operations (such as train, transform, or inference). These specified column(s)
92
100
  will remain untouched throughout the process. This option is helpful in scenarios
93
101
  requiring automatic input_cols inference, but need to avoid using specific
94
- columns, like index columns, during training or inference.
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
95
104
 
96
105
  drop_input_cols: Optional[bool], default=False
97
106
  If set, the response of predict(), transform() methods will not contain input columns.
@@ -136,7 +145,7 @@ class LGBMClassifier(BaseTransformer):
136
145
  self.set_passthrough_cols(passthrough_cols)
137
146
  self.set_drop_input_cols(drop_input_cols)
138
147
  self.set_sample_weight_col(sample_weight_col)
139
- deps = set(LightGBMWrapperProvider().dependencies)
148
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
140
149
 
141
150
  self._deps = list(deps)
142
151
 
@@ -164,14 +173,15 @@ class LGBMClassifier(BaseTransformer):
164
173
  args=init_args,
165
174
  klass=lightgbm.LGBMClassifier
166
175
  )
167
- self._sklearn_object = lightgbm.LGBMClassifier(
176
+ self._sklearn_object: Any = lightgbm.LGBMClassifier(
168
177
  **cleaned_up_init_args,
169
178
  **kwargs,
170
179
  )
171
180
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
172
181
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
173
182
  self._snowpark_cols: Optional[List[str]] = self.input_cols
174
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=LightGBMWrapperProvider())
183
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._autogenerated = True
175
185
 
176
186
  def _get_rand_id(self) -> str:
177
187
  """
@@ -227,54 +237,48 @@ class LGBMClassifier(BaseTransformer):
227
237
  self
228
238
  """
229
239
  self._infer_input_output_cols(dataset)
230
- if isinstance(dataset, pd.DataFrame):
231
- assert self._sklearn_object is not None # keep mypy happy
232
- self._sklearn_object = self._handlers.fit_pandas(
233
- dataset,
234
- self._sklearn_object,
235
- self.input_cols,
236
- self.label_cols,
237
- self.sample_weight_col
238
- )
239
- elif isinstance(dataset, DataFrame):
240
- self._fit_snowpark(dataset)
241
- else:
242
- raise TypeError(
243
- f"Unexpected dataset type: {type(dataset)}."
244
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
245
- )
240
+ if isinstance(dataset, DataFrame):
241
+ session = dataset._session
242
+ assert session is not None # keep mypy happy
243
+ # Validate that key package version in user workspace are supported in snowflake conda channel
244
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
245
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
246
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
247
+
248
+ # Specify input columns so column pruning will be enforced
249
+ selected_cols = self._get_active_columns()
250
+ if len(selected_cols) > 0:
251
+ dataset = dataset.select(selected_cols)
252
+
253
+ self._snowpark_cols = dataset.select(self.input_cols).columns
254
+
255
+ # If we are already in a stored procedure, no need to kick off another one.
256
+ if SNOWML_SPROC_ENV in os.environ:
257
+ statement_params = telemetry.get_function_usage_statement_params(
258
+ project=_PROJECT,
259
+ subproject=_SUBPROJECT,
260
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMClassifier.__class__.__name__),
261
+ api_calls=[Session.call],
262
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
263
+ )
264
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
265
+ pd_df.columns = dataset.columns
266
+ dataset = pd_df
267
+
268
+ model_trainer = ModelTrainerBuilder.build(
269
+ estimator=self._sklearn_object,
270
+ dataset=dataset,
271
+ input_cols=self.input_cols,
272
+ label_cols=self.label_cols,
273
+ sample_weight_col=self.sample_weight_col,
274
+ autogenerated=self._autogenerated,
275
+ subproject=_SUBPROJECT
276
+ )
277
+ self._sklearn_object = model_trainer.train()
246
278
  self._is_fitted = True
247
279
  self._get_model_signatures(dataset)
248
280
  return self
249
281
 
250
- def _fit_snowpark(self, dataset: DataFrame) -> None:
251
- session = dataset._session
252
- assert session is not None # keep mypy happy
253
- # Validate that key package version in user workspace are supported in snowflake conda channel
254
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
255
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
256
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
257
-
258
- # Specify input columns so column pruning will be enforced
259
- selected_cols = self._get_active_columns()
260
- if len(selected_cols) > 0:
261
- dataset = dataset.select(selected_cols)
262
-
263
- estimator = self._sklearn_object
264
- assert estimator is not None # Keep mypy happy
265
-
266
- self._snowpark_cols = dataset.select(self.input_cols).columns
267
-
268
- self._sklearn_object = self._handlers.fit_snowpark(
269
- dataset,
270
- session,
271
- estimator,
272
- ["snowflake-snowpark-python"] + self._get_dependencies(),
273
- self.input_cols,
274
- self.label_cols,
275
- self.sample_weight_col,
276
- )
277
-
278
282
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
279
283
  if self._drop_input_cols:
280
284
  return []
@@ -462,11 +466,6 @@ class LGBMClassifier(BaseTransformer):
462
466
  subproject=_SUBPROJECT,
463
467
  custom_tags=dict([("autogen", True)]),
464
468
  )
465
- @telemetry.add_stmt_params_to_df(
466
- project=_PROJECT,
467
- subproject=_SUBPROJECT,
468
- custom_tags=dict([("autogen", True)]),
469
- )
470
469
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
471
470
  """Return the predicted value for each sample
472
471
  For more details on this function, see [lightgbm.LGBMClassifier.predict]
@@ -520,11 +519,6 @@ class LGBMClassifier(BaseTransformer):
520
519
  subproject=_SUBPROJECT,
521
520
  custom_tags=dict([("autogen", True)]),
522
521
  )
523
- @telemetry.add_stmt_params_to_df(
524
- project=_PROJECT,
525
- subproject=_SUBPROJECT,
526
- custom_tags=dict([("autogen", True)]),
527
- )
528
522
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
529
523
  """Method not supported for this class.
530
524
 
@@ -581,7 +575,8 @@ class LGBMClassifier(BaseTransformer):
581
575
  if False:
582
576
  self.fit(dataset)
583
577
  assert self._sklearn_object is not None
584
- return self._sklearn_object.labels_
578
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
579
+ return labels
585
580
  else:
586
581
  raise NotImplementedError
587
582
 
@@ -617,6 +612,7 @@ class LGBMClassifier(BaseTransformer):
617
612
  output_cols = []
618
613
 
619
614
  # Make sure column names are valid snowflake identifiers.
615
+ assert output_cols is not None # Make MyPy happy
620
616
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
621
617
 
622
618
  return rv
@@ -627,11 +623,6 @@ class LGBMClassifier(BaseTransformer):
627
623
  subproject=_SUBPROJECT,
628
624
  custom_tags=dict([("autogen", True)]),
629
625
  )
630
- @telemetry.add_stmt_params_to_df(
631
- project=_PROJECT,
632
- subproject=_SUBPROJECT,
633
- custom_tags=dict([("autogen", True)]),
634
- )
635
626
  def predict_proba(
636
627
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
637
628
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -674,11 +665,6 @@ class LGBMClassifier(BaseTransformer):
674
665
  subproject=_SUBPROJECT,
675
666
  custom_tags=dict([("autogen", True)]),
676
667
  )
677
- @telemetry.add_stmt_params_to_df(
678
- project=_PROJECT,
679
- subproject=_SUBPROJECT,
680
- custom_tags=dict([("autogen", True)]),
681
- )
682
668
  def predict_log_proba(
683
669
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
684
670
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -717,16 +703,6 @@ class LGBMClassifier(BaseTransformer):
717
703
  return output_df
718
704
 
719
705
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
720
- @telemetry.send_api_usage_telemetry(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
- @telemetry.add_stmt_params_to_df(
726
- project=_PROJECT,
727
- subproject=_SUBPROJECT,
728
- custom_tags=dict([("autogen", True)]),
729
- )
730
706
  def decision_function(
731
707
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
732
708
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -827,11 +803,6 @@ class LGBMClassifier(BaseTransformer):
827
803
  subproject=_SUBPROJECT,
828
804
  custom_tags=dict([("autogen", True)]),
829
805
  )
830
- @telemetry.add_stmt_params_to_df(
831
- project=_PROJECT,
832
- subproject=_SUBPROJECT,
833
- custom_tags=dict([("autogen", True)]),
834
- )
835
806
  def kneighbors(
836
807
  self,
837
808
  dataset: Union[DataFrame, pd.DataFrame],
@@ -891,9 +862,9 @@ class LGBMClassifier(BaseTransformer):
891
862
  # For classifier, the type of predict is the same as the type of label
892
863
  if self._sklearn_object._estimator_type == 'classifier':
893
864
  # label columns is the desired type for output
894
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
865
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
895
866
  # rename the output columns
896
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
867
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
897
868
  self._model_signature_dict["predict"] = ModelSignature(inputs,
898
869
  ([] if self._drop_input_cols else inputs)
899
870
  + outputs)