snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_ridge".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelRidge(BaseTransformer):
|
57
58
|
r"""Kernel ridge regression
|
58
59
|
For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
|
@@ -60,6 +61,51 @@ class KernelRidge(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float or array-like of shape (n_targets,), default=1.0
|
64
110
|
Regularization strength; must be a positive float. Regularization
|
65
111
|
improves the conditioning of the problem and reduces the variance of
|
@@ -100,42 +146,6 @@ class KernelRidge(BaseTransformer):
|
|
100
146
|
kernel_params: dict, default=None
|
101
147
|
Additional parameters (keyword arguments) for kernel function passed
|
102
148
|
as callable object.
|
103
|
-
|
104
|
-
input_cols: Optional[Union[str, List[str]]]
|
105
|
-
A string or list of strings representing column names that contain features.
|
106
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
107
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
108
|
-
parameters are considered input columns.
|
109
|
-
|
110
|
-
label_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain labels.
|
112
|
-
This is a required param for estimators, as there is no way to infer these
|
113
|
-
columns. If this parameter is not specified, then object is fitted without
|
114
|
-
labels (like a transformer).
|
115
|
-
|
116
|
-
output_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that will store the
|
118
|
-
output of predict and transform operations. The length of output_cols must
|
119
|
-
match the expected number of output columns from the specific estimator or
|
120
|
-
transformer class used.
|
121
|
-
If this parameter is not specified, output column names are derived by
|
122
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
123
|
-
column names work for estimator's predict() method, but output_cols must
|
124
|
-
be set explicitly for transformers.
|
125
|
-
|
126
|
-
sample_weight_col: Optional[str]
|
127
|
-
A string representing the column name containing the sample weights.
|
128
|
-
This argument is only required when working with weighted datasets.
|
129
|
-
|
130
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or a list of strings indicating column names to be excluded from any
|
132
|
-
operations (such as train, transform, or inference). These specified column(s)
|
133
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
134
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
135
|
-
columns, like index columns, during training or inference.
|
136
|
-
|
137
|
-
drop_input_cols: Optional[bool], default=False
|
138
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
139
149
|
"""
|
140
150
|
|
141
151
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -162,7 +172,7 @@ class KernelRidge(BaseTransformer):
|
|
162
172
|
self.set_passthrough_cols(passthrough_cols)
|
163
173
|
self.set_drop_input_cols(drop_input_cols)
|
164
174
|
self.set_sample_weight_col(sample_weight_col)
|
165
|
-
deps = set(
|
175
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
166
176
|
|
167
177
|
self._deps = list(deps)
|
168
178
|
|
@@ -176,13 +186,14 @@ class KernelRidge(BaseTransformer):
|
|
176
186
|
args=init_args,
|
177
187
|
klass=sklearn.kernel_ridge.KernelRidge
|
178
188
|
)
|
179
|
-
self._sklearn_object = sklearn.kernel_ridge.KernelRidge(
|
189
|
+
self._sklearn_object: Any = sklearn.kernel_ridge.KernelRidge(
|
180
190
|
**cleaned_up_init_args,
|
181
191
|
)
|
182
192
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
183
193
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
184
194
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
185
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
195
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelRidge.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
196
|
+
self._autogenerated = True
|
186
197
|
|
187
198
|
def _get_rand_id(self) -> str:
|
188
199
|
"""
|
@@ -238,54 +249,48 @@ class KernelRidge(BaseTransformer):
|
|
238
249
|
self
|
239
250
|
"""
|
240
251
|
self._infer_input_output_cols(dataset)
|
241
|
-
if isinstance(dataset,
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
self.
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
252
|
+
if isinstance(dataset, DataFrame):
|
253
|
+
session = dataset._session
|
254
|
+
assert session is not None # keep mypy happy
|
255
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
+
|
260
|
+
# Specify input columns so column pruning will be enforced
|
261
|
+
selected_cols = self._get_active_columns()
|
262
|
+
if len(selected_cols) > 0:
|
263
|
+
dataset = dataset.select(selected_cols)
|
264
|
+
|
265
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
+
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
|
+
if SNOWML_SPROC_ENV in os.environ:
|
269
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
270
|
+
project=_PROJECT,
|
271
|
+
subproject=_SUBPROJECT,
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelRidge.__class__.__name__),
|
273
|
+
api_calls=[Session.call],
|
274
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
|
+
)
|
276
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
|
+
pd_df.columns = dataset.columns
|
278
|
+
dataset = pd_df
|
279
|
+
|
280
|
+
model_trainer = ModelTrainerBuilder.build(
|
281
|
+
estimator=self._sklearn_object,
|
282
|
+
dataset=dataset,
|
283
|
+
input_cols=self.input_cols,
|
284
|
+
label_cols=self.label_cols,
|
285
|
+
sample_weight_col=self.sample_weight_col,
|
286
|
+
autogenerated=self._autogenerated,
|
287
|
+
subproject=_SUBPROJECT
|
288
|
+
)
|
289
|
+
self._sklearn_object = model_trainer.train()
|
257
290
|
self._is_fitted = True
|
258
291
|
self._get_model_signatures(dataset)
|
259
292
|
return self
|
260
293
|
|
261
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
262
|
-
session = dataset._session
|
263
|
-
assert session is not None # keep mypy happy
|
264
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
265
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
266
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
267
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
268
|
-
|
269
|
-
# Specify input columns so column pruning will be enforced
|
270
|
-
selected_cols = self._get_active_columns()
|
271
|
-
if len(selected_cols) > 0:
|
272
|
-
dataset = dataset.select(selected_cols)
|
273
|
-
|
274
|
-
estimator = self._sklearn_object
|
275
|
-
assert estimator is not None # Keep mypy happy
|
276
|
-
|
277
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
|
-
|
279
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
280
|
-
dataset,
|
281
|
-
session,
|
282
|
-
estimator,
|
283
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
284
|
-
self.input_cols,
|
285
|
-
self.label_cols,
|
286
|
-
self.sample_weight_col,
|
287
|
-
)
|
288
|
-
|
289
294
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
290
295
|
if self._drop_input_cols:
|
291
296
|
return []
|
@@ -473,11 +478,6 @@ class KernelRidge(BaseTransformer):
|
|
473
478
|
subproject=_SUBPROJECT,
|
474
479
|
custom_tags=dict([("autogen", True)]),
|
475
480
|
)
|
476
|
-
@telemetry.add_stmt_params_to_df(
|
477
|
-
project=_PROJECT,
|
478
|
-
subproject=_SUBPROJECT,
|
479
|
-
custom_tags=dict([("autogen", True)]),
|
480
|
-
)
|
481
481
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
482
482
|
"""Predict using the kernel ridge model
|
483
483
|
For more details on this function, see [sklearn.kernel_ridge.KernelRidge.predict]
|
@@ -531,11 +531,6 @@ class KernelRidge(BaseTransformer):
|
|
531
531
|
subproject=_SUBPROJECT,
|
532
532
|
custom_tags=dict([("autogen", True)]),
|
533
533
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
534
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
535
|
"""Method not supported for this class.
|
541
536
|
|
@@ -592,7 +587,8 @@ class KernelRidge(BaseTransformer):
|
|
592
587
|
if False:
|
593
588
|
self.fit(dataset)
|
594
589
|
assert self._sklearn_object is not None
|
595
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
596
592
|
else:
|
597
593
|
raise NotImplementedError
|
598
594
|
|
@@ -628,6 +624,7 @@ class KernelRidge(BaseTransformer):
|
|
628
624
|
output_cols = []
|
629
625
|
|
630
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
631
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
632
629
|
|
633
630
|
return rv
|
@@ -638,11 +635,6 @@ class KernelRidge(BaseTransformer):
|
|
638
635
|
subproject=_SUBPROJECT,
|
639
636
|
custom_tags=dict([("autogen", True)]),
|
640
637
|
)
|
641
|
-
@telemetry.add_stmt_params_to_df(
|
642
|
-
project=_PROJECT,
|
643
|
-
subproject=_SUBPROJECT,
|
644
|
-
custom_tags=dict([("autogen", True)]),
|
645
|
-
)
|
646
638
|
def predict_proba(
|
647
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
648
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -683,11 +675,6 @@ class KernelRidge(BaseTransformer):
|
|
683
675
|
subproject=_SUBPROJECT,
|
684
676
|
custom_tags=dict([("autogen", True)]),
|
685
677
|
)
|
686
|
-
@telemetry.add_stmt_params_to_df(
|
687
|
-
project=_PROJECT,
|
688
|
-
subproject=_SUBPROJECT,
|
689
|
-
custom_tags=dict([("autogen", True)]),
|
690
|
-
)
|
691
678
|
def predict_log_proba(
|
692
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
693
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -724,16 +711,6 @@ class KernelRidge(BaseTransformer):
|
|
724
711
|
return output_df
|
725
712
|
|
726
713
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
727
|
-
@telemetry.send_api_usage_telemetry(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
|
-
@telemetry.add_stmt_params_to_df(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
714
|
def decision_function(
|
738
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
739
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -834,11 +811,6 @@ class KernelRidge(BaseTransformer):
|
|
834
811
|
subproject=_SUBPROJECT,
|
835
812
|
custom_tags=dict([("autogen", True)]),
|
836
813
|
)
|
837
|
-
@telemetry.add_stmt_params_to_df(
|
838
|
-
project=_PROJECT,
|
839
|
-
subproject=_SUBPROJECT,
|
840
|
-
custom_tags=dict([("autogen", True)]),
|
841
|
-
)
|
842
814
|
def kneighbors(
|
843
815
|
self,
|
844
816
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -898,9 +870,9 @@ class KernelRidge(BaseTransformer):
|
|
898
870
|
# For classifier, the type of predict is the same as the type of label
|
899
871
|
if self._sklearn_object._estimator_type == 'classifier':
|
900
872
|
# label columns is the desired type for output
|
901
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
873
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
902
874
|
# rename the output columns
|
903
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
875
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
904
876
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
905
877
|
([] if self._drop_input_cols else inputs)
|
906
878
|
+ outputs)
|
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import LightGBMWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class LGBMClassifier(BaseTransformer):
|
56
57
|
r"""LightGBM classifier
|
57
58
|
For more details on this class, see [lightgbm.LGBMClassifier]
|
@@ -64,34 +65,42 @@ class LGBMClassifier(BaseTransformer):
|
|
64
65
|
A string or list of strings representing column names that contain features.
|
65
66
|
If this parameter is not specified, all columns in the input DataFrame except
|
66
67
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
67
|
-
parameters are considered input columns.
|
68
|
-
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
69
71
|
label_cols: Optional[Union[str, List[str]]]
|
70
72
|
A string or list of strings representing column names that contain labels.
|
71
|
-
|
72
|
-
|
73
|
-
labels (like a transformer).
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
74
75
|
|
75
76
|
output_cols: Optional[Union[str, List[str]]]
|
76
77
|
A string or list of strings representing column names that will store the
|
77
78
|
output of predict and transform operations. The length of output_cols must
|
78
|
-
match the expected number of output columns from the specific
|
79
|
+
match the expected number of output columns from the specific predictor or
|
79
80
|
transformer class used.
|
80
|
-
If this parameter
|
81
|
-
|
82
|
-
|
83
|
-
be set explicitly for transformers.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
84
90
|
|
85
91
|
sample_weight_col: Optional[str]
|
86
92
|
A string representing the column name containing the sample weights.
|
87
|
-
This argument is only required when working with weighted datasets.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
88
96
|
|
89
97
|
passthrough_cols: Optional[Union[str, List[str]]]
|
90
98
|
A string or a list of strings indicating column names to be excluded from any
|
91
99
|
operations (such as train, transform, or inference). These specified column(s)
|
92
100
|
will remain untouched throughout the process. This option is helpful in scenarios
|
93
101
|
requiring automatic input_cols inference, but need to avoid using specific
|
94
|
-
columns, like index columns, during training or inference.
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
95
104
|
|
96
105
|
drop_input_cols: Optional[bool], default=False
|
97
106
|
If set, the response of predict(), transform() methods will not contain input columns.
|
@@ -136,7 +145,7 @@ class LGBMClassifier(BaseTransformer):
|
|
136
145
|
self.set_passthrough_cols(passthrough_cols)
|
137
146
|
self.set_drop_input_cols(drop_input_cols)
|
138
147
|
self.set_sample_weight_col(sample_weight_col)
|
139
|
-
deps = set(
|
148
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
|
140
149
|
|
141
150
|
self._deps = list(deps)
|
142
151
|
|
@@ -164,14 +173,15 @@ class LGBMClassifier(BaseTransformer):
|
|
164
173
|
args=init_args,
|
165
174
|
klass=lightgbm.LGBMClassifier
|
166
175
|
)
|
167
|
-
self._sklearn_object = lightgbm.LGBMClassifier(
|
176
|
+
self._sklearn_object: Any = lightgbm.LGBMClassifier(
|
168
177
|
**cleaned_up_init_args,
|
169
178
|
**kwargs,
|
170
179
|
)
|
171
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
172
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
173
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
174
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
175
185
|
|
176
186
|
def _get_rand_id(self) -> str:
|
177
187
|
"""
|
@@ -227,54 +237,48 @@ class LGBMClassifier(BaseTransformer):
|
|
227
237
|
self
|
228
238
|
"""
|
229
239
|
self._infer_input_output_cols(dataset)
|
230
|
-
if isinstance(dataset,
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
self.
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMClassifier.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
246
278
|
self._is_fitted = True
|
247
279
|
self._get_model_signatures(dataset)
|
248
280
|
return self
|
249
281
|
|
250
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
251
|
-
session = dataset._session
|
252
|
-
assert session is not None # keep mypy happy
|
253
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
254
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
255
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
256
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
257
|
-
|
258
|
-
# Specify input columns so column pruning will be enforced
|
259
|
-
selected_cols = self._get_active_columns()
|
260
|
-
if len(selected_cols) > 0:
|
261
|
-
dataset = dataset.select(selected_cols)
|
262
|
-
|
263
|
-
estimator = self._sklearn_object
|
264
|
-
assert estimator is not None # Keep mypy happy
|
265
|
-
|
266
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
267
|
-
|
268
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
269
|
-
dataset,
|
270
|
-
session,
|
271
|
-
estimator,
|
272
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
273
|
-
self.input_cols,
|
274
|
-
self.label_cols,
|
275
|
-
self.sample_weight_col,
|
276
|
-
)
|
277
|
-
|
278
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
279
283
|
if self._drop_input_cols:
|
280
284
|
return []
|
@@ -462,11 +466,6 @@ class LGBMClassifier(BaseTransformer):
|
|
462
466
|
subproject=_SUBPROJECT,
|
463
467
|
custom_tags=dict([("autogen", True)]),
|
464
468
|
)
|
465
|
-
@telemetry.add_stmt_params_to_df(
|
466
|
-
project=_PROJECT,
|
467
|
-
subproject=_SUBPROJECT,
|
468
|
-
custom_tags=dict([("autogen", True)]),
|
469
|
-
)
|
470
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
471
470
|
"""Return the predicted value for each sample
|
472
471
|
For more details on this function, see [lightgbm.LGBMClassifier.predict]
|
@@ -520,11 +519,6 @@ class LGBMClassifier(BaseTransformer):
|
|
520
519
|
subproject=_SUBPROJECT,
|
521
520
|
custom_tags=dict([("autogen", True)]),
|
522
521
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
522
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
523
|
"""Method not supported for this class.
|
530
524
|
|
@@ -581,7 +575,8 @@ class LGBMClassifier(BaseTransformer):
|
|
581
575
|
if False:
|
582
576
|
self.fit(dataset)
|
583
577
|
assert self._sklearn_object is not None
|
584
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
585
580
|
else:
|
586
581
|
raise NotImplementedError
|
587
582
|
|
@@ -617,6 +612,7 @@ class LGBMClassifier(BaseTransformer):
|
|
617
612
|
output_cols = []
|
618
613
|
|
619
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
620
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
621
617
|
|
622
618
|
return rv
|
@@ -627,11 +623,6 @@ class LGBMClassifier(BaseTransformer):
|
|
627
623
|
subproject=_SUBPROJECT,
|
628
624
|
custom_tags=dict([("autogen", True)]),
|
629
625
|
)
|
630
|
-
@telemetry.add_stmt_params_to_df(
|
631
|
-
project=_PROJECT,
|
632
|
-
subproject=_SUBPROJECT,
|
633
|
-
custom_tags=dict([("autogen", True)]),
|
634
|
-
)
|
635
626
|
def predict_proba(
|
636
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
637
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -674,11 +665,6 @@ class LGBMClassifier(BaseTransformer):
|
|
674
665
|
subproject=_SUBPROJECT,
|
675
666
|
custom_tags=dict([("autogen", True)]),
|
676
667
|
)
|
677
|
-
@telemetry.add_stmt_params_to_df(
|
678
|
-
project=_PROJECT,
|
679
|
-
subproject=_SUBPROJECT,
|
680
|
-
custom_tags=dict([("autogen", True)]),
|
681
|
-
)
|
682
668
|
def predict_log_proba(
|
683
669
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
684
670
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -717,16 +703,6 @@ class LGBMClassifier(BaseTransformer):
|
|
717
703
|
return output_df
|
718
704
|
|
719
705
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
720
|
-
@telemetry.send_api_usage_telemetry(
|
721
|
-
project=_PROJECT,
|
722
|
-
subproject=_SUBPROJECT,
|
723
|
-
custom_tags=dict([("autogen", True)]),
|
724
|
-
)
|
725
|
-
@telemetry.add_stmt_params_to_df(
|
726
|
-
project=_PROJECT,
|
727
|
-
subproject=_SUBPROJECT,
|
728
|
-
custom_tags=dict([("autogen", True)]),
|
729
|
-
)
|
730
706
|
def decision_function(
|
731
707
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
732
708
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -827,11 +803,6 @@ class LGBMClassifier(BaseTransformer):
|
|
827
803
|
subproject=_SUBPROJECT,
|
828
804
|
custom_tags=dict([("autogen", True)]),
|
829
805
|
)
|
830
|
-
@telemetry.add_stmt_params_to_df(
|
831
|
-
project=_PROJECT,
|
832
|
-
subproject=_SUBPROJECT,
|
833
|
-
custom_tags=dict([("autogen", True)]),
|
834
|
-
)
|
835
806
|
def kneighbors(
|
836
807
|
self,
|
837
808
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -891,9 +862,9 @@ class LGBMClassifier(BaseTransformer):
|
|
891
862
|
# For classifier, the type of predict is the same as the type of label
|
892
863
|
if self._sklearn_object._estimator_type == 'classifier':
|
893
864
|
# label columns is the desired type for output
|
894
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
865
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
895
866
|
# rename the output columns
|
896
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
867
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
897
868
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
898
869
|
([] if self._drop_input_cols else inputs)
|
899
870
|
+ outputs)
|