snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PassiveAggressiveRegressor(BaseTransformer):
|
57
58
|
r"""Passive Aggressive Regressor
|
58
59
|
For more details on this class, see [sklearn.linear_model.PassiveAggressiveRegressor]
|
@@ -61,6 +62,50 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
64
109
|
C: float, default=1.0
|
65
110
|
Maximum step size (regularization). Defaults to 1.0.
|
66
111
|
|
@@ -128,42 +173,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
128
173
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
129
174
|
averaging will begin once the total number of samples seen reaches
|
130
175
|
average. So average=10 will begin averaging after seeing 10 samples.
|
131
|
-
|
132
|
-
input_cols: Optional[Union[str, List[str]]]
|
133
|
-
A string or list of strings representing column names that contain features.
|
134
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
135
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
136
|
-
parameters are considered input columns.
|
137
|
-
|
138
|
-
label_cols: Optional[Union[str, List[str]]]
|
139
|
-
A string or list of strings representing column names that contain labels.
|
140
|
-
This is a required param for estimators, as there is no way to infer these
|
141
|
-
columns. If this parameter is not specified, then object is fitted without
|
142
|
-
labels (like a transformer).
|
143
|
-
|
144
|
-
output_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that will store the
|
146
|
-
output of predict and transform operations. The length of output_cols must
|
147
|
-
match the expected number of output columns from the specific estimator or
|
148
|
-
transformer class used.
|
149
|
-
If this parameter is not specified, output column names are derived by
|
150
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
151
|
-
column names work for estimator's predict() method, but output_cols must
|
152
|
-
be set explicitly for transformers.
|
153
|
-
|
154
|
-
sample_weight_col: Optional[str]
|
155
|
-
A string representing the column name containing the sample weights.
|
156
|
-
This argument is only required when working with weighted datasets.
|
157
|
-
|
158
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
159
|
-
A string or a list of strings indicating column names to be excluded from any
|
160
|
-
operations (such as train, transform, or inference). These specified column(s)
|
161
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
162
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
163
|
-
columns, like index columns, during training or inference.
|
164
|
-
|
165
|
-
drop_input_cols: Optional[bool], default=False
|
166
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
167
176
|
"""
|
168
177
|
|
169
178
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -198,7 +207,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
198
207
|
self.set_passthrough_cols(passthrough_cols)
|
199
208
|
self.set_drop_input_cols(drop_input_cols)
|
200
209
|
self.set_sample_weight_col(sample_weight_col)
|
201
|
-
deps = set(
|
210
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
202
211
|
|
203
212
|
self._deps = list(deps)
|
204
213
|
|
@@ -220,13 +229,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
220
229
|
args=init_args,
|
221
230
|
klass=sklearn.linear_model.PassiveAggressiveRegressor
|
222
231
|
)
|
223
|
-
self._sklearn_object = sklearn.linear_model.PassiveAggressiveRegressor(
|
232
|
+
self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveRegressor(
|
224
233
|
**cleaned_up_init_args,
|
225
234
|
)
|
226
235
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
227
236
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
228
237
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
229
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
238
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
239
|
+
self._autogenerated = True
|
230
240
|
|
231
241
|
def _get_rand_id(self) -> str:
|
232
242
|
"""
|
@@ -282,54 +292,48 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
282
292
|
self
|
283
293
|
"""
|
284
294
|
self._infer_input_output_cols(dataset)
|
285
|
-
if isinstance(dataset,
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
self.
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
295
|
+
if isinstance(dataset, DataFrame):
|
296
|
+
session = dataset._session
|
297
|
+
assert session is not None # keep mypy happy
|
298
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
299
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
300
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
301
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
302
|
+
|
303
|
+
# Specify input columns so column pruning will be enforced
|
304
|
+
selected_cols = self._get_active_columns()
|
305
|
+
if len(selected_cols) > 0:
|
306
|
+
dataset = dataset.select(selected_cols)
|
307
|
+
|
308
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
|
+
|
310
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
311
|
+
if SNOWML_SPROC_ENV in os.environ:
|
312
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
313
|
+
project=_PROJECT,
|
314
|
+
subproject=_SUBPROJECT,
|
315
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__),
|
316
|
+
api_calls=[Session.call],
|
317
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
318
|
+
)
|
319
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
320
|
+
pd_df.columns = dataset.columns
|
321
|
+
dataset = pd_df
|
322
|
+
|
323
|
+
model_trainer = ModelTrainerBuilder.build(
|
324
|
+
estimator=self._sklearn_object,
|
325
|
+
dataset=dataset,
|
326
|
+
input_cols=self.input_cols,
|
327
|
+
label_cols=self.label_cols,
|
328
|
+
sample_weight_col=self.sample_weight_col,
|
329
|
+
autogenerated=self._autogenerated,
|
330
|
+
subproject=_SUBPROJECT
|
331
|
+
)
|
332
|
+
self._sklearn_object = model_trainer.train()
|
301
333
|
self._is_fitted = True
|
302
334
|
self._get_model_signatures(dataset)
|
303
335
|
return self
|
304
336
|
|
305
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
306
|
-
session = dataset._session
|
307
|
-
assert session is not None # keep mypy happy
|
308
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
309
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
310
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
311
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
-
|
313
|
-
# Specify input columns so column pruning will be enforced
|
314
|
-
selected_cols = self._get_active_columns()
|
315
|
-
if len(selected_cols) > 0:
|
316
|
-
dataset = dataset.select(selected_cols)
|
317
|
-
|
318
|
-
estimator = self._sklearn_object
|
319
|
-
assert estimator is not None # Keep mypy happy
|
320
|
-
|
321
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
322
|
-
|
323
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
324
|
-
dataset,
|
325
|
-
session,
|
326
|
-
estimator,
|
327
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
328
|
-
self.input_cols,
|
329
|
-
self.label_cols,
|
330
|
-
self.sample_weight_col,
|
331
|
-
)
|
332
|
-
|
333
337
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
334
338
|
if self._drop_input_cols:
|
335
339
|
return []
|
@@ -517,11 +521,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
517
521
|
subproject=_SUBPROJECT,
|
518
522
|
custom_tags=dict([("autogen", True)]),
|
519
523
|
)
|
520
|
-
@telemetry.add_stmt_params_to_df(
|
521
|
-
project=_PROJECT,
|
522
|
-
subproject=_SUBPROJECT,
|
523
|
-
custom_tags=dict([("autogen", True)]),
|
524
|
-
)
|
525
524
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
526
525
|
"""Predict using the linear model
|
527
526
|
For more details on this function, see [sklearn.linear_model.PassiveAggressiveRegressor.predict]
|
@@ -575,11 +574,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
575
574
|
subproject=_SUBPROJECT,
|
576
575
|
custom_tags=dict([("autogen", True)]),
|
577
576
|
)
|
578
|
-
@telemetry.add_stmt_params_to_df(
|
579
|
-
project=_PROJECT,
|
580
|
-
subproject=_SUBPROJECT,
|
581
|
-
custom_tags=dict([("autogen", True)]),
|
582
|
-
)
|
583
577
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
584
578
|
"""Method not supported for this class.
|
585
579
|
|
@@ -636,7 +630,8 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
636
630
|
if False:
|
637
631
|
self.fit(dataset)
|
638
632
|
assert self._sklearn_object is not None
|
639
|
-
|
633
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
634
|
+
return labels
|
640
635
|
else:
|
641
636
|
raise NotImplementedError
|
642
637
|
|
@@ -672,6 +667,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
672
667
|
output_cols = []
|
673
668
|
|
674
669
|
# Make sure column names are valid snowflake identifiers.
|
670
|
+
assert output_cols is not None # Make MyPy happy
|
675
671
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
676
672
|
|
677
673
|
return rv
|
@@ -682,11 +678,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
682
678
|
subproject=_SUBPROJECT,
|
683
679
|
custom_tags=dict([("autogen", True)]),
|
684
680
|
)
|
685
|
-
@telemetry.add_stmt_params_to_df(
|
686
|
-
project=_PROJECT,
|
687
|
-
subproject=_SUBPROJECT,
|
688
|
-
custom_tags=dict([("autogen", True)]),
|
689
|
-
)
|
690
681
|
def predict_proba(
|
691
682
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
692
683
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -727,11 +718,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
727
718
|
subproject=_SUBPROJECT,
|
728
719
|
custom_tags=dict([("autogen", True)]),
|
729
720
|
)
|
730
|
-
@telemetry.add_stmt_params_to_df(
|
731
|
-
project=_PROJECT,
|
732
|
-
subproject=_SUBPROJECT,
|
733
|
-
custom_tags=dict([("autogen", True)]),
|
734
|
-
)
|
735
721
|
def predict_log_proba(
|
736
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
737
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -768,16 +754,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
768
754
|
return output_df
|
769
755
|
|
770
756
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
771
|
-
@telemetry.send_api_usage_telemetry(
|
772
|
-
project=_PROJECT,
|
773
|
-
subproject=_SUBPROJECT,
|
774
|
-
custom_tags=dict([("autogen", True)]),
|
775
|
-
)
|
776
|
-
@telemetry.add_stmt_params_to_df(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
757
|
def decision_function(
|
782
758
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
783
759
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -878,11 +854,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
878
854
|
subproject=_SUBPROJECT,
|
879
855
|
custom_tags=dict([("autogen", True)]),
|
880
856
|
)
|
881
|
-
@telemetry.add_stmt_params_to_df(
|
882
|
-
project=_PROJECT,
|
883
|
-
subproject=_SUBPROJECT,
|
884
|
-
custom_tags=dict([("autogen", True)]),
|
885
|
-
)
|
886
857
|
def kneighbors(
|
887
858
|
self,
|
888
859
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -942,9 +913,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
942
913
|
# For classifier, the type of predict is the same as the type of label
|
943
914
|
if self._sklearn_object._estimator_type == 'classifier':
|
944
915
|
# label columns is the desired type for output
|
945
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
916
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
946
917
|
# rename the output columns
|
947
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
918
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
948
919
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
949
920
|
([] if self._drop_input_cols else inputs)
|
950
921
|
+ outputs)
|