snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ExtraTreeClassifier(BaseTransformer):
57
58
  r"""An extremely randomized tree classifier
58
59
  For more details on this class, see [sklearn.tree.ExtraTreeClassifier]
@@ -60,6 +61,51 @@ class ExtraTreeClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  criterion: {"gini", "entropy", "log_loss"}, default="gini"
64
110
  The function to measure the quality of a split. Supported criteria are
65
111
  "gini" for the Gini impurity and "log_loss" and "entropy" both for the
@@ -166,42 +212,6 @@ class ExtraTreeClassifier(BaseTransformer):
166
212
  subtree with the largest cost complexity that is smaller than
167
213
  ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
168
214
  :ref:`minimal_cost_complexity_pruning` for details.
169
-
170
- input_cols: Optional[Union[str, List[str]]]
171
- A string or list of strings representing column names that contain features.
172
- If this parameter is not specified, all columns in the input DataFrame except
173
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
174
- parameters are considered input columns.
175
-
176
- label_cols: Optional[Union[str, List[str]]]
177
- A string or list of strings representing column names that contain labels.
178
- This is a required param for estimators, as there is no way to infer these
179
- columns. If this parameter is not specified, then object is fitted without
180
- labels (like a transformer).
181
-
182
- output_cols: Optional[Union[str, List[str]]]
183
- A string or list of strings representing column names that will store the
184
- output of predict and transform operations. The length of output_cols must
185
- match the expected number of output columns from the specific estimator or
186
- transformer class used.
187
- If this parameter is not specified, output column names are derived by
188
- adding an OUTPUT_ prefix to the label column names. These inferred output
189
- column names work for estimator's predict() method, but output_cols must
190
- be set explicitly for transformers.
191
-
192
- sample_weight_col: Optional[str]
193
- A string representing the column name containing the sample weights.
194
- This argument is only required when working with weighted datasets.
195
-
196
- passthrough_cols: Optional[Union[str, List[str]]]
197
- A string or a list of strings indicating column names to be excluded from any
198
- operations (such as train, transform, or inference). These specified column(s)
199
- will remain untouched throughout the process. This option is helpful in scenarios
200
- requiring automatic input_cols inference, but need to avoid using specific
201
- columns, like index columns, during training or inference.
202
-
203
- drop_input_cols: Optional[bool], default=False
204
- If set, the response of predict(), transform() methods will not contain input columns.
205
215
  """
206
216
 
207
217
  def __init__( # type: ignore[no-untyped-def]
@@ -234,7 +244,7 @@ class ExtraTreeClassifier(BaseTransformer):
234
244
  self.set_passthrough_cols(passthrough_cols)
235
245
  self.set_drop_input_cols(drop_input_cols)
236
246
  self.set_sample_weight_col(sample_weight_col)
237
- deps = set(SklearnWrapperProvider().dependencies)
247
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
238
248
 
239
249
  self._deps = list(deps)
240
250
 
@@ -254,13 +264,14 @@ class ExtraTreeClassifier(BaseTransformer):
254
264
  args=init_args,
255
265
  klass=sklearn.tree.ExtraTreeClassifier
256
266
  )
257
- self._sklearn_object = sklearn.tree.ExtraTreeClassifier(
267
+ self._sklearn_object: Any = sklearn.tree.ExtraTreeClassifier(
258
268
  **cleaned_up_init_args,
259
269
  )
260
270
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
261
271
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
262
272
  self._snowpark_cols: Optional[List[str]] = self.input_cols
263
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
273
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
274
+ self._autogenerated = True
264
275
 
265
276
  def _get_rand_id(self) -> str:
266
277
  """
@@ -316,54 +327,48 @@ class ExtraTreeClassifier(BaseTransformer):
316
327
  self
317
328
  """
318
329
  self._infer_input_output_cols(dataset)
319
- if isinstance(dataset, pd.DataFrame):
320
- assert self._sklearn_object is not None # keep mypy happy
321
- self._sklearn_object = self._handlers.fit_pandas(
322
- dataset,
323
- self._sklearn_object,
324
- self.input_cols,
325
- self.label_cols,
326
- self.sample_weight_col
327
- )
328
- elif isinstance(dataset, DataFrame):
329
- self._fit_snowpark(dataset)
330
- else:
331
- raise TypeError(
332
- f"Unexpected dataset type: {type(dataset)}."
333
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
334
- )
330
+ if isinstance(dataset, DataFrame):
331
+ session = dataset._session
332
+ assert session is not None # keep mypy happy
333
+ # Validate that key package version in user workspace are supported in snowflake conda channel
334
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
335
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
336
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
337
+
338
+ # Specify input columns so column pruning will be enforced
339
+ selected_cols = self._get_active_columns()
340
+ if len(selected_cols) > 0:
341
+ dataset = dataset.select(selected_cols)
342
+
343
+ self._snowpark_cols = dataset.select(self.input_cols).columns
344
+
345
+ # If we are already in a stored procedure, no need to kick off another one.
346
+ if SNOWML_SPROC_ENV in os.environ:
347
+ statement_params = telemetry.get_function_usage_statement_params(
348
+ project=_PROJECT,
349
+ subproject=_SUBPROJECT,
350
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeClassifier.__class__.__name__),
351
+ api_calls=[Session.call],
352
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
353
+ )
354
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
355
+ pd_df.columns = dataset.columns
356
+ dataset = pd_df
357
+
358
+ model_trainer = ModelTrainerBuilder.build(
359
+ estimator=self._sklearn_object,
360
+ dataset=dataset,
361
+ input_cols=self.input_cols,
362
+ label_cols=self.label_cols,
363
+ sample_weight_col=self.sample_weight_col,
364
+ autogenerated=self._autogenerated,
365
+ subproject=_SUBPROJECT
366
+ )
367
+ self._sklearn_object = model_trainer.train()
335
368
  self._is_fitted = True
336
369
  self._get_model_signatures(dataset)
337
370
  return self
338
371
 
339
- def _fit_snowpark(self, dataset: DataFrame) -> None:
340
- session = dataset._session
341
- assert session is not None # keep mypy happy
342
- # Validate that key package version in user workspace are supported in snowflake conda channel
343
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
344
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
345
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
346
-
347
- # Specify input columns so column pruning will be enforced
348
- selected_cols = self._get_active_columns()
349
- if len(selected_cols) > 0:
350
- dataset = dataset.select(selected_cols)
351
-
352
- estimator = self._sklearn_object
353
- assert estimator is not None # Keep mypy happy
354
-
355
- self._snowpark_cols = dataset.select(self.input_cols).columns
356
-
357
- self._sklearn_object = self._handlers.fit_snowpark(
358
- dataset,
359
- session,
360
- estimator,
361
- ["snowflake-snowpark-python"] + self._get_dependencies(),
362
- self.input_cols,
363
- self.label_cols,
364
- self.sample_weight_col,
365
- )
366
-
367
372
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
368
373
  if self._drop_input_cols:
369
374
  return []
@@ -551,11 +556,6 @@ class ExtraTreeClassifier(BaseTransformer):
551
556
  subproject=_SUBPROJECT,
552
557
  custom_tags=dict([("autogen", True)]),
553
558
  )
554
- @telemetry.add_stmt_params_to_df(
555
- project=_PROJECT,
556
- subproject=_SUBPROJECT,
557
- custom_tags=dict([("autogen", True)]),
558
- )
559
559
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
560
560
  """Predict class or regression value for X
561
561
  For more details on this function, see [sklearn.tree.ExtraTreeClassifier.predict]
@@ -609,11 +609,6 @@ class ExtraTreeClassifier(BaseTransformer):
609
609
  subproject=_SUBPROJECT,
610
610
  custom_tags=dict([("autogen", True)]),
611
611
  )
612
- @telemetry.add_stmt_params_to_df(
613
- project=_PROJECT,
614
- subproject=_SUBPROJECT,
615
- custom_tags=dict([("autogen", True)]),
616
- )
617
612
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
618
613
  """Method not supported for this class.
619
614
 
@@ -670,7 +665,8 @@ class ExtraTreeClassifier(BaseTransformer):
670
665
  if False:
671
666
  self.fit(dataset)
672
667
  assert self._sklearn_object is not None
673
- return self._sklearn_object.labels_
668
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
669
+ return labels
674
670
  else:
675
671
  raise NotImplementedError
676
672
 
@@ -706,6 +702,7 @@ class ExtraTreeClassifier(BaseTransformer):
706
702
  output_cols = []
707
703
 
708
704
  # Make sure column names are valid snowflake identifiers.
705
+ assert output_cols is not None # Make MyPy happy
709
706
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
710
707
 
711
708
  return rv
@@ -716,11 +713,6 @@ class ExtraTreeClassifier(BaseTransformer):
716
713
  subproject=_SUBPROJECT,
717
714
  custom_tags=dict([("autogen", True)]),
718
715
  )
719
- @telemetry.add_stmt_params_to_df(
720
- project=_PROJECT,
721
- subproject=_SUBPROJECT,
722
- custom_tags=dict([("autogen", True)]),
723
- )
724
716
  def predict_proba(
725
717
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
726
718
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -763,11 +755,6 @@ class ExtraTreeClassifier(BaseTransformer):
763
755
  subproject=_SUBPROJECT,
764
756
  custom_tags=dict([("autogen", True)]),
765
757
  )
766
- @telemetry.add_stmt_params_to_df(
767
- project=_PROJECT,
768
- subproject=_SUBPROJECT,
769
- custom_tags=dict([("autogen", True)]),
770
- )
771
758
  def predict_log_proba(
772
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
773
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -806,16 +793,6 @@ class ExtraTreeClassifier(BaseTransformer):
806
793
  return output_df
807
794
 
808
795
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
809
- @telemetry.send_api_usage_telemetry(
810
- project=_PROJECT,
811
- subproject=_SUBPROJECT,
812
- custom_tags=dict([("autogen", True)]),
813
- )
814
- @telemetry.add_stmt_params_to_df(
815
- project=_PROJECT,
816
- subproject=_SUBPROJECT,
817
- custom_tags=dict([("autogen", True)]),
818
- )
819
796
  def decision_function(
820
797
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
821
798
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -916,11 +893,6 @@ class ExtraTreeClassifier(BaseTransformer):
916
893
  subproject=_SUBPROJECT,
917
894
  custom_tags=dict([("autogen", True)]),
918
895
  )
919
- @telemetry.add_stmt_params_to_df(
920
- project=_PROJECT,
921
- subproject=_SUBPROJECT,
922
- custom_tags=dict([("autogen", True)]),
923
- )
924
896
  def kneighbors(
925
897
  self,
926
898
  dataset: Union[DataFrame, pd.DataFrame],
@@ -980,9 +952,9 @@ class ExtraTreeClassifier(BaseTransformer):
980
952
  # For classifier, the type of predict is the same as the type of label
981
953
  if self._sklearn_object._estimator_type == 'classifier':
982
954
  # label columns is the desired type for output
983
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
955
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
984
956
  # rename the output columns
985
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
957
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
986
958
  self._model_signature_dict["predict"] = ModelSignature(inputs,
987
959
  ([] if self._drop_input_cols else inputs)
988
960
  + outputs)