snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearDiscriminantAnalysis(BaseTransformer):
|
57
58
|
r"""Linear Discriminant Analysis
|
58
59
|
For more details on this class, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis]
|
@@ -60,6 +61,51 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
solver: {'svd', 'lsqr', 'eigen'}, default='svd'
|
64
110
|
Solver to use, possible values:
|
65
111
|
- 'svd': Singular value decomposition (default).
|
@@ -111,42 +157,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
111
157
|
This should be left to None if `shrinkage` is used.
|
112
158
|
Note that `covariance_estimator` works only with 'lsqr' and 'eigen'
|
113
159
|
solvers.
|
114
|
-
|
115
|
-
input_cols: Optional[Union[str, List[str]]]
|
116
|
-
A string or list of strings representing column names that contain features.
|
117
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
118
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
119
|
-
parameters are considered input columns.
|
120
|
-
|
121
|
-
label_cols: Optional[Union[str, List[str]]]
|
122
|
-
A string or list of strings representing column names that contain labels.
|
123
|
-
This is a required param for estimators, as there is no way to infer these
|
124
|
-
columns. If this parameter is not specified, then object is fitted without
|
125
|
-
labels (like a transformer).
|
126
|
-
|
127
|
-
output_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that will store the
|
129
|
-
output of predict and transform operations. The length of output_cols must
|
130
|
-
match the expected number of output columns from the specific estimator or
|
131
|
-
transformer class used.
|
132
|
-
If this parameter is not specified, output column names are derived by
|
133
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
134
|
-
column names work for estimator's predict() method, but output_cols must
|
135
|
-
be set explicitly for transformers.
|
136
|
-
|
137
|
-
sample_weight_col: Optional[str]
|
138
|
-
A string representing the column name containing the sample weights.
|
139
|
-
This argument is only required when working with weighted datasets.
|
140
|
-
|
141
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or a list of strings indicating column names to be excluded from any
|
143
|
-
operations (such as train, transform, or inference). These specified column(s)
|
144
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
145
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
146
|
-
columns, like index columns, during training or inference.
|
147
|
-
|
148
|
-
drop_input_cols: Optional[bool], default=False
|
149
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
150
160
|
"""
|
151
161
|
|
152
162
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -174,7 +184,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
174
184
|
self.set_passthrough_cols(passthrough_cols)
|
175
185
|
self.set_drop_input_cols(drop_input_cols)
|
176
186
|
self.set_sample_weight_col(sample_weight_col)
|
177
|
-
deps = set(
|
187
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
178
188
|
|
179
189
|
self._deps = list(deps)
|
180
190
|
|
@@ -189,13 +199,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
189
199
|
args=init_args,
|
190
200
|
klass=sklearn.discriminant_analysis.LinearDiscriminantAnalysis
|
191
201
|
)
|
192
|
-
self._sklearn_object = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(
|
202
|
+
self._sklearn_object: Any = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(
|
193
203
|
**cleaned_up_init_args,
|
194
204
|
)
|
195
205
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
196
206
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
197
207
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
198
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
208
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
209
|
+
self._autogenerated = True
|
199
210
|
|
200
211
|
def _get_rand_id(self) -> str:
|
201
212
|
"""
|
@@ -251,54 +262,48 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
251
262
|
self
|
252
263
|
"""
|
253
264
|
self._infer_input_output_cols(dataset)
|
254
|
-
if isinstance(dataset,
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
self.
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
265
|
+
if isinstance(dataset, DataFrame):
|
266
|
+
session = dataset._session
|
267
|
+
assert session is not None # keep mypy happy
|
268
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
269
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
270
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
271
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
272
|
+
|
273
|
+
# Specify input columns so column pruning will be enforced
|
274
|
+
selected_cols = self._get_active_columns()
|
275
|
+
if len(selected_cols) > 0:
|
276
|
+
dataset = dataset.select(selected_cols)
|
277
|
+
|
278
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
279
|
+
|
280
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
281
|
+
if SNOWML_SPROC_ENV in os.environ:
|
282
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
283
|
+
project=_PROJECT,
|
284
|
+
subproject=_SUBPROJECT,
|
285
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__),
|
286
|
+
api_calls=[Session.call],
|
287
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
288
|
+
)
|
289
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
290
|
+
pd_df.columns = dataset.columns
|
291
|
+
dataset = pd_df
|
292
|
+
|
293
|
+
model_trainer = ModelTrainerBuilder.build(
|
294
|
+
estimator=self._sklearn_object,
|
295
|
+
dataset=dataset,
|
296
|
+
input_cols=self.input_cols,
|
297
|
+
label_cols=self.label_cols,
|
298
|
+
sample_weight_col=self.sample_weight_col,
|
299
|
+
autogenerated=self._autogenerated,
|
300
|
+
subproject=_SUBPROJECT
|
301
|
+
)
|
302
|
+
self._sklearn_object = model_trainer.train()
|
270
303
|
self._is_fitted = True
|
271
304
|
self._get_model_signatures(dataset)
|
272
305
|
return self
|
273
306
|
|
274
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
275
|
-
session = dataset._session
|
276
|
-
assert session is not None # keep mypy happy
|
277
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
278
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
279
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
280
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
281
|
-
|
282
|
-
# Specify input columns so column pruning will be enforced
|
283
|
-
selected_cols = self._get_active_columns()
|
284
|
-
if len(selected_cols) > 0:
|
285
|
-
dataset = dataset.select(selected_cols)
|
286
|
-
|
287
|
-
estimator = self._sklearn_object
|
288
|
-
assert estimator is not None # Keep mypy happy
|
289
|
-
|
290
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
|
-
|
292
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
293
|
-
dataset,
|
294
|
-
session,
|
295
|
-
estimator,
|
296
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
297
|
-
self.input_cols,
|
298
|
-
self.label_cols,
|
299
|
-
self.sample_weight_col,
|
300
|
-
)
|
301
|
-
|
302
307
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
303
308
|
if self._drop_input_cols:
|
304
309
|
return []
|
@@ -486,11 +491,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
486
491
|
subproject=_SUBPROJECT,
|
487
492
|
custom_tags=dict([("autogen", True)]),
|
488
493
|
)
|
489
|
-
@telemetry.add_stmt_params_to_df(
|
490
|
-
project=_PROJECT,
|
491
|
-
subproject=_SUBPROJECT,
|
492
|
-
custom_tags=dict([("autogen", True)]),
|
493
|
-
)
|
494
494
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
495
495
|
"""Predict class labels for samples in X
|
496
496
|
For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.predict]
|
@@ -544,11 +544,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
544
544
|
subproject=_SUBPROJECT,
|
545
545
|
custom_tags=dict([("autogen", True)]),
|
546
546
|
)
|
547
|
-
@telemetry.add_stmt_params_to_df(
|
548
|
-
project=_PROJECT,
|
549
|
-
subproject=_SUBPROJECT,
|
550
|
-
custom_tags=dict([("autogen", True)]),
|
551
|
-
)
|
552
547
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
553
548
|
"""Project data to maximize class separation
|
554
549
|
For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform]
|
@@ -607,7 +602,8 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
607
602
|
if False:
|
608
603
|
self.fit(dataset)
|
609
604
|
assert self._sklearn_object is not None
|
610
|
-
|
605
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
606
|
+
return labels
|
611
607
|
else:
|
612
608
|
raise NotImplementedError
|
613
609
|
|
@@ -643,6 +639,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
643
639
|
output_cols = []
|
644
640
|
|
645
641
|
# Make sure column names are valid snowflake identifiers.
|
642
|
+
assert output_cols is not None # Make MyPy happy
|
646
643
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
647
644
|
|
648
645
|
return rv
|
@@ -653,11 +650,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
653
650
|
subproject=_SUBPROJECT,
|
654
651
|
custom_tags=dict([("autogen", True)]),
|
655
652
|
)
|
656
|
-
@telemetry.add_stmt_params_to_df(
|
657
|
-
project=_PROJECT,
|
658
|
-
subproject=_SUBPROJECT,
|
659
|
-
custom_tags=dict([("autogen", True)]),
|
660
|
-
)
|
661
653
|
def predict_proba(
|
662
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
663
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +692,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
700
692
|
subproject=_SUBPROJECT,
|
701
693
|
custom_tags=dict([("autogen", True)]),
|
702
694
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
695
|
def predict_log_proba(
|
709
696
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
697
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -743,16 +730,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
743
730
|
return output_df
|
744
731
|
|
745
732
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
746
|
-
@telemetry.send_api_usage_telemetry(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
|
-
@telemetry.add_stmt_params_to_df(
|
752
|
-
project=_PROJECT,
|
753
|
-
subproject=_SUBPROJECT,
|
754
|
-
custom_tags=dict([("autogen", True)]),
|
755
|
-
)
|
756
733
|
def decision_function(
|
757
734
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
758
735
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -855,11 +832,6 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
855
832
|
subproject=_SUBPROJECT,
|
856
833
|
custom_tags=dict([("autogen", True)]),
|
857
834
|
)
|
858
|
-
@telemetry.add_stmt_params_to_df(
|
859
|
-
project=_PROJECT,
|
860
|
-
subproject=_SUBPROJECT,
|
861
|
-
custom_tags=dict([("autogen", True)]),
|
862
|
-
)
|
863
835
|
def kneighbors(
|
864
836
|
self,
|
865
837
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -919,9 +891,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
919
891
|
# For classifier, the type of predict is the same as the type of label
|
920
892
|
if self._sklearn_object._estimator_type == 'classifier':
|
921
893
|
# label columns is the desired type for output
|
922
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
894
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
923
895
|
# rename the output columns
|
924
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
896
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
925
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
926
898
|
([] if self._drop_input_cols else inputs)
|
927
899
|
+ outputs)
|