snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class QuadraticDiscriminantAnalysis(BaseTransformer):
|
57
58
|
r"""Quadratic Discriminant Analysis
|
58
59
|
For more details on this class, see [sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis]
|
@@ -60,61 +61,70 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
priors: array-like of shape (n_classes,), default=None
|
64
|
-
Class priors. By default, the class proportions are inferred from the
|
65
|
-
training data.
|
66
|
-
|
67
|
-
reg_param: float, default=0.0
|
68
|
-
Regularizes the per-class covariance estimates by transforming S2 as
|
69
|
-
``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``,
|
70
|
-
where S2 corresponds to the `scaling_` attribute of a given class.
|
71
|
-
|
72
|
-
store_covariance: bool, default=False
|
73
|
-
If True, the class covariance matrices are explicitly computed and
|
74
|
-
stored in the `self.covariance_` attribute.
|
75
|
-
|
76
|
-
tol: float, default=1.0e-4
|
77
|
-
Absolute threshold for a singular value to be considered significant,
|
78
|
-
used to estimate the rank of `Xk` where `Xk` is the centered matrix
|
79
|
-
of samples in class k. This parameter does not affect the
|
80
|
-
predictions. It only controls a warning that is raised when features
|
81
|
-
are considered to be colinear.
|
82
64
|
|
83
65
|
input_cols: Optional[Union[str, List[str]]]
|
84
66
|
A string or list of strings representing column names that contain features.
|
85
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
86
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
87
|
-
parameters are considered input columns.
|
88
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
89
72
|
label_cols: Optional[Union[str, List[str]]]
|
90
73
|
A string or list of strings representing column names that contain labels.
|
91
|
-
|
92
|
-
|
93
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
94
76
|
|
95
77
|
output_cols: Optional[Union[str, List[str]]]
|
96
78
|
A string or list of strings representing column names that will store the
|
97
79
|
output of predict and transform operations. The length of output_cols must
|
98
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
99
81
|
transformer class used.
|
100
|
-
If this parameter
|
101
|
-
|
102
|
-
|
103
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
104
91
|
|
105
92
|
sample_weight_col: Optional[str]
|
106
93
|
A string representing the column name containing the sample weights.
|
107
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
108
97
|
|
109
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
110
99
|
A string or a list of strings indicating column names to be excluded from any
|
111
100
|
operations (such as train, transform, or inference). These specified column(s)
|
112
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
113
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
114
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
115
105
|
|
116
106
|
drop_input_cols: Optional[bool], default=False
|
117
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
priors: array-like of shape (n_classes,), default=None
|
110
|
+
Class priors. By default, the class proportions are inferred from the
|
111
|
+
training data.
|
112
|
+
|
113
|
+
reg_param: float, default=0.0
|
114
|
+
Regularizes the per-class covariance estimates by transforming S2 as
|
115
|
+
``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``,
|
116
|
+
where S2 corresponds to the `scaling_` attribute of a given class.
|
117
|
+
|
118
|
+
store_covariance: bool, default=False
|
119
|
+
If True, the class covariance matrices are explicitly computed and
|
120
|
+
stored in the `self.covariance_` attribute.
|
121
|
+
|
122
|
+
tol: float, default=1.0e-4
|
123
|
+
Absolute threshold for a singular value to be considered significant,
|
124
|
+
used to estimate the rank of `Xk` where `Xk` is the centered matrix
|
125
|
+
of samples in class k. This parameter does not affect the
|
126
|
+
predictions. It only controls a warning that is raised when features
|
127
|
+
are considered to be colinear.
|
118
128
|
"""
|
119
129
|
|
120
130
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -139,7 +149,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
139
149
|
self.set_passthrough_cols(passthrough_cols)
|
140
150
|
self.set_drop_input_cols(drop_input_cols)
|
141
151
|
self.set_sample_weight_col(sample_weight_col)
|
142
|
-
deps = set(
|
152
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
143
153
|
|
144
154
|
self._deps = list(deps)
|
145
155
|
|
@@ -151,13 +161,14 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
151
161
|
args=init_args,
|
152
162
|
klass=sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
|
153
163
|
)
|
154
|
-
self._sklearn_object = sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(
|
164
|
+
self._sklearn_object: Any = sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(
|
155
165
|
**cleaned_up_init_args,
|
156
166
|
)
|
157
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
158
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
159
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
160
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
170
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
|
+
self._autogenerated = True
|
161
172
|
|
162
173
|
def _get_rand_id(self) -> str:
|
163
174
|
"""
|
@@ -213,54 +224,48 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
213
224
|
self
|
214
225
|
"""
|
215
226
|
self._infer_input_output_cols(dataset)
|
216
|
-
if isinstance(dataset,
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
self.
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
227
|
+
if isinstance(dataset, DataFrame):
|
228
|
+
session = dataset._session
|
229
|
+
assert session is not None # keep mypy happy
|
230
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
+
|
235
|
+
# Specify input columns so column pruning will be enforced
|
236
|
+
selected_cols = self._get_active_columns()
|
237
|
+
if len(selected_cols) > 0:
|
238
|
+
dataset = dataset.select(selected_cols)
|
239
|
+
|
240
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
+
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
243
|
+
if SNOWML_SPROC_ENV in os.environ:
|
244
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
245
|
+
project=_PROJECT,
|
246
|
+
subproject=_SUBPROJECT,
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), QuadraticDiscriminantAnalysis.__class__.__name__),
|
248
|
+
api_calls=[Session.call],
|
249
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
250
|
+
)
|
251
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
252
|
+
pd_df.columns = dataset.columns
|
253
|
+
dataset = pd_df
|
254
|
+
|
255
|
+
model_trainer = ModelTrainerBuilder.build(
|
256
|
+
estimator=self._sklearn_object,
|
257
|
+
dataset=dataset,
|
258
|
+
input_cols=self.input_cols,
|
259
|
+
label_cols=self.label_cols,
|
260
|
+
sample_weight_col=self.sample_weight_col,
|
261
|
+
autogenerated=self._autogenerated,
|
262
|
+
subproject=_SUBPROJECT
|
263
|
+
)
|
264
|
+
self._sklearn_object = model_trainer.train()
|
232
265
|
self._is_fitted = True
|
233
266
|
self._get_model_signatures(dataset)
|
234
267
|
return self
|
235
268
|
|
236
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
237
|
-
session = dataset._session
|
238
|
-
assert session is not None # keep mypy happy
|
239
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
-
|
244
|
-
# Specify input columns so column pruning will be enforced
|
245
|
-
selected_cols = self._get_active_columns()
|
246
|
-
if len(selected_cols) > 0:
|
247
|
-
dataset = dataset.select(selected_cols)
|
248
|
-
|
249
|
-
estimator = self._sklearn_object
|
250
|
-
assert estimator is not None # Keep mypy happy
|
251
|
-
|
252
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
-
|
254
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
255
|
-
dataset,
|
256
|
-
session,
|
257
|
-
estimator,
|
258
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
259
|
-
self.input_cols,
|
260
|
-
self.label_cols,
|
261
|
-
self.sample_weight_col,
|
262
|
-
)
|
263
|
-
|
264
269
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
265
270
|
if self._drop_input_cols:
|
266
271
|
return []
|
@@ -448,11 +453,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
448
453
|
subproject=_SUBPROJECT,
|
449
454
|
custom_tags=dict([("autogen", True)]),
|
450
455
|
)
|
451
|
-
@telemetry.add_stmt_params_to_df(
|
452
|
-
project=_PROJECT,
|
453
|
-
subproject=_SUBPROJECT,
|
454
|
-
custom_tags=dict([("autogen", True)]),
|
455
|
-
)
|
456
456
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
457
457
|
"""Perform classification on an array of test vectors X
|
458
458
|
For more details on this function, see [sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict]
|
@@ -506,11 +506,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
506
506
|
subproject=_SUBPROJECT,
|
507
507
|
custom_tags=dict([("autogen", True)]),
|
508
508
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
510
|
"""Method not supported for this class.
|
516
511
|
|
@@ -567,7 +562,8 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
567
562
|
if False:
|
568
563
|
self.fit(dataset)
|
569
564
|
assert self._sklearn_object is not None
|
570
|
-
|
565
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
566
|
+
return labels
|
571
567
|
else:
|
572
568
|
raise NotImplementedError
|
573
569
|
|
@@ -603,6 +599,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
603
599
|
output_cols = []
|
604
600
|
|
605
601
|
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
606
603
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
604
|
|
608
605
|
return rv
|
@@ -613,11 +610,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
613
610
|
subproject=_SUBPROJECT,
|
614
611
|
custom_tags=dict([("autogen", True)]),
|
615
612
|
)
|
616
|
-
@telemetry.add_stmt_params_to_df(
|
617
|
-
project=_PROJECT,
|
618
|
-
subproject=_SUBPROJECT,
|
619
|
-
custom_tags=dict([("autogen", True)]),
|
620
|
-
)
|
621
613
|
def predict_proba(
|
622
614
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
623
615
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -660,11 +652,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
660
652
|
subproject=_SUBPROJECT,
|
661
653
|
custom_tags=dict([("autogen", True)]),
|
662
654
|
)
|
663
|
-
@telemetry.add_stmt_params_to_df(
|
664
|
-
project=_PROJECT,
|
665
|
-
subproject=_SUBPROJECT,
|
666
|
-
custom_tags=dict([("autogen", True)]),
|
667
|
-
)
|
668
655
|
def predict_log_proba(
|
669
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
670
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -703,16 +690,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
703
690
|
return output_df
|
704
691
|
|
705
692
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
706
|
-
@telemetry.send_api_usage_telemetry(
|
707
|
-
project=_PROJECT,
|
708
|
-
subproject=_SUBPROJECT,
|
709
|
-
custom_tags=dict([("autogen", True)]),
|
710
|
-
)
|
711
|
-
@telemetry.add_stmt_params_to_df(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
693
|
def decision_function(
|
717
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
718
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -815,11 +792,6 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
815
792
|
subproject=_SUBPROJECT,
|
816
793
|
custom_tags=dict([("autogen", True)]),
|
817
794
|
)
|
818
|
-
@telemetry.add_stmt_params_to_df(
|
819
|
-
project=_PROJECT,
|
820
|
-
subproject=_SUBPROJECT,
|
821
|
-
custom_tags=dict([("autogen", True)]),
|
822
|
-
)
|
823
795
|
def kneighbors(
|
824
796
|
self,
|
825
797
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -879,9 +851,9 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
879
851
|
# For classifier, the type of predict is the same as the type of label
|
880
852
|
if self._sklearn_object._estimator_type == 'classifier':
|
881
853
|
# label columns is the desired type for output
|
882
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
854
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
883
855
|
# rename the output columns
|
884
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
856
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
885
857
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
886
858
|
([] if self._drop_input_cols else inputs)
|
887
859
|
+ outputs)
|