snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MissingIndicator(BaseTransformer):
|
57
58
|
r"""Binary indicators for missing values
|
58
59
|
For more details on this class, see [sklearn.impute.MissingIndicator]
|
@@ -60,6 +61,49 @@ class MissingIndicator(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
missing_values: int, float, str, np.nan or None, default=np.nan
|
64
108
|
The placeholder for the missing values. All occurrences of
|
65
109
|
`missing_values` will be imputed. For pandas' dataframes with
|
@@ -86,42 +130,6 @@ class MissingIndicator(BaseTransformer):
|
|
86
130
|
If `True`, :meth:`transform` will raise an error when there are
|
87
131
|
features with missing values that have no missing values in
|
88
132
|
:meth:`fit`. This is applicable only when `features='missing-only'`.
|
89
|
-
|
90
|
-
input_cols: Optional[Union[str, List[str]]]
|
91
|
-
A string or list of strings representing column names that contain features.
|
92
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
93
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
94
|
-
parameters are considered input columns.
|
95
|
-
|
96
|
-
label_cols: Optional[Union[str, List[str]]]
|
97
|
-
A string or list of strings representing column names that contain labels.
|
98
|
-
This is a required param for estimators, as there is no way to infer these
|
99
|
-
columns. If this parameter is not specified, then object is fitted without
|
100
|
-
labels (like a transformer).
|
101
|
-
|
102
|
-
output_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that will store the
|
104
|
-
output of predict and transform operations. The length of output_cols must
|
105
|
-
match the expected number of output columns from the specific estimator or
|
106
|
-
transformer class used.
|
107
|
-
If this parameter is not specified, output column names are derived by
|
108
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
109
|
-
column names work for estimator's predict() method, but output_cols must
|
110
|
-
be set explicitly for transformers.
|
111
|
-
|
112
|
-
sample_weight_col: Optional[str]
|
113
|
-
A string representing the column name containing the sample weights.
|
114
|
-
This argument is only required when working with weighted datasets.
|
115
|
-
|
116
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or a list of strings indicating column names to be excluded from any
|
118
|
-
operations (such as train, transform, or inference). These specified column(s)
|
119
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
120
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
121
|
-
columns, like index columns, during training or inference.
|
122
|
-
|
123
|
-
drop_input_cols: Optional[bool], default=False
|
124
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
125
133
|
"""
|
126
134
|
|
127
135
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -146,7 +154,7 @@ class MissingIndicator(BaseTransformer):
|
|
146
154
|
self.set_passthrough_cols(passthrough_cols)
|
147
155
|
self.set_drop_input_cols(drop_input_cols)
|
148
156
|
self.set_sample_weight_col(sample_weight_col)
|
149
|
-
deps = set(
|
157
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
150
158
|
|
151
159
|
self._deps = list(deps)
|
152
160
|
|
@@ -158,13 +166,14 @@ class MissingIndicator(BaseTransformer):
|
|
158
166
|
args=init_args,
|
159
167
|
klass=sklearn.impute.MissingIndicator
|
160
168
|
)
|
161
|
-
self._sklearn_object = sklearn.impute.MissingIndicator(
|
169
|
+
self._sklearn_object: Any = sklearn.impute.MissingIndicator(
|
162
170
|
**cleaned_up_init_args,
|
163
171
|
)
|
164
172
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
165
173
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
166
174
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
167
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
175
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
176
|
+
self._autogenerated = True
|
168
177
|
|
169
178
|
def _get_rand_id(self) -> str:
|
170
179
|
"""
|
@@ -220,54 +229,48 @@ class MissingIndicator(BaseTransformer):
|
|
220
229
|
self
|
221
230
|
"""
|
222
231
|
self._infer_input_output_cols(dataset)
|
223
|
-
if isinstance(dataset,
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
self.
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
232
|
+
if isinstance(dataset, DataFrame):
|
233
|
+
session = dataset._session
|
234
|
+
assert session is not None # keep mypy happy
|
235
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
236
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
237
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
238
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
239
|
+
|
240
|
+
# Specify input columns so column pruning will be enforced
|
241
|
+
selected_cols = self._get_active_columns()
|
242
|
+
if len(selected_cols) > 0:
|
243
|
+
dataset = dataset.select(selected_cols)
|
244
|
+
|
245
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
246
|
+
|
247
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
248
|
+
if SNOWML_SPROC_ENV in os.environ:
|
249
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
250
|
+
project=_PROJECT,
|
251
|
+
subproject=_SUBPROJECT,
|
252
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MissingIndicator.__class__.__name__),
|
253
|
+
api_calls=[Session.call],
|
254
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
255
|
+
)
|
256
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
257
|
+
pd_df.columns = dataset.columns
|
258
|
+
dataset = pd_df
|
259
|
+
|
260
|
+
model_trainer = ModelTrainerBuilder.build(
|
261
|
+
estimator=self._sklearn_object,
|
262
|
+
dataset=dataset,
|
263
|
+
input_cols=self.input_cols,
|
264
|
+
label_cols=self.label_cols,
|
265
|
+
sample_weight_col=self.sample_weight_col,
|
266
|
+
autogenerated=self._autogenerated,
|
267
|
+
subproject=_SUBPROJECT
|
268
|
+
)
|
269
|
+
self._sklearn_object = model_trainer.train()
|
239
270
|
self._is_fitted = True
|
240
271
|
self._get_model_signatures(dataset)
|
241
272
|
return self
|
242
273
|
|
243
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
244
|
-
session = dataset._session
|
245
|
-
assert session is not None # keep mypy happy
|
246
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
247
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
248
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
249
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
250
|
-
|
251
|
-
# Specify input columns so column pruning will be enforced
|
252
|
-
selected_cols = self._get_active_columns()
|
253
|
-
if len(selected_cols) > 0:
|
254
|
-
dataset = dataset.select(selected_cols)
|
255
|
-
|
256
|
-
estimator = self._sklearn_object
|
257
|
-
assert estimator is not None # Keep mypy happy
|
258
|
-
|
259
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
260
|
-
|
261
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
262
|
-
dataset,
|
263
|
-
session,
|
264
|
-
estimator,
|
265
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
266
|
-
self.input_cols,
|
267
|
-
self.label_cols,
|
268
|
-
self.sample_weight_col,
|
269
|
-
)
|
270
|
-
|
271
274
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
272
275
|
if self._drop_input_cols:
|
273
276
|
return []
|
@@ -455,11 +458,6 @@ class MissingIndicator(BaseTransformer):
|
|
455
458
|
subproject=_SUBPROJECT,
|
456
459
|
custom_tags=dict([("autogen", True)]),
|
457
460
|
)
|
458
|
-
@telemetry.add_stmt_params_to_df(
|
459
|
-
project=_PROJECT,
|
460
|
-
subproject=_SUBPROJECT,
|
461
|
-
custom_tags=dict([("autogen", True)]),
|
462
|
-
)
|
463
461
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
464
462
|
"""Method not supported for this class.
|
465
463
|
|
@@ -511,11 +509,6 @@ class MissingIndicator(BaseTransformer):
|
|
511
509
|
subproject=_SUBPROJECT,
|
512
510
|
custom_tags=dict([("autogen", True)]),
|
513
511
|
)
|
514
|
-
@telemetry.add_stmt_params_to_df(
|
515
|
-
project=_PROJECT,
|
516
|
-
subproject=_SUBPROJECT,
|
517
|
-
custom_tags=dict([("autogen", True)]),
|
518
|
-
)
|
519
512
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
520
513
|
"""Generate missing values indicator for `X`
|
521
514
|
For more details on this function, see [sklearn.impute.MissingIndicator.transform]
|
@@ -574,7 +567,8 @@ class MissingIndicator(BaseTransformer):
|
|
574
567
|
if False:
|
575
568
|
self.fit(dataset)
|
576
569
|
assert self._sklearn_object is not None
|
577
|
-
|
570
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
571
|
+
return labels
|
578
572
|
else:
|
579
573
|
raise NotImplementedError
|
580
574
|
|
@@ -610,6 +604,7 @@ class MissingIndicator(BaseTransformer):
|
|
610
604
|
output_cols = []
|
611
605
|
|
612
606
|
# Make sure column names are valid snowflake identifiers.
|
607
|
+
assert output_cols is not None # Make MyPy happy
|
613
608
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
614
609
|
|
615
610
|
return rv
|
@@ -620,11 +615,6 @@ class MissingIndicator(BaseTransformer):
|
|
620
615
|
subproject=_SUBPROJECT,
|
621
616
|
custom_tags=dict([("autogen", True)]),
|
622
617
|
)
|
623
|
-
@telemetry.add_stmt_params_to_df(
|
624
|
-
project=_PROJECT,
|
625
|
-
subproject=_SUBPROJECT,
|
626
|
-
custom_tags=dict([("autogen", True)]),
|
627
|
-
)
|
628
618
|
def predict_proba(
|
629
619
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
630
620
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -665,11 +655,6 @@ class MissingIndicator(BaseTransformer):
|
|
665
655
|
subproject=_SUBPROJECT,
|
666
656
|
custom_tags=dict([("autogen", True)]),
|
667
657
|
)
|
668
|
-
@telemetry.add_stmt_params_to_df(
|
669
|
-
project=_PROJECT,
|
670
|
-
subproject=_SUBPROJECT,
|
671
|
-
custom_tags=dict([("autogen", True)]),
|
672
|
-
)
|
673
658
|
def predict_log_proba(
|
674
659
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
675
660
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -706,16 +691,6 @@ class MissingIndicator(BaseTransformer):
|
|
706
691
|
return output_df
|
707
692
|
|
708
693
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
709
|
-
@telemetry.send_api_usage_telemetry(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
|
-
@telemetry.add_stmt_params_to_df(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
694
|
def decision_function(
|
720
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
721
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -814,11 +789,6 @@ class MissingIndicator(BaseTransformer):
|
|
814
789
|
subproject=_SUBPROJECT,
|
815
790
|
custom_tags=dict([("autogen", True)]),
|
816
791
|
)
|
817
|
-
@telemetry.add_stmt_params_to_df(
|
818
|
-
project=_PROJECT,
|
819
|
-
subproject=_SUBPROJECT,
|
820
|
-
custom_tags=dict([("autogen", True)]),
|
821
|
-
)
|
822
792
|
def kneighbors(
|
823
793
|
self,
|
824
794
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -878,9 +848,9 @@ class MissingIndicator(BaseTransformer):
|
|
878
848
|
# For classifier, the type of predict is the same as the type of label
|
879
849
|
if self._sklearn_object._estimator_type == 'classifier':
|
880
850
|
# label columns is the desired type for output
|
881
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
851
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
882
852
|
# rename the output columns
|
883
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
853
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
884
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
885
855
|
([] if self._drop_input_cols else inputs)
|
886
856
|
+ outputs)
|
@@ -278,6 +278,7 @@ class SimpleImputer(base.BaseTransformer):
|
|
278
278
|
state = STRATEGY_TO_STATE_DICT[self.strategy]
|
279
279
|
assert state is not None
|
280
280
|
dataset_copy = copy.copy(dataset)
|
281
|
+
dataset_copy = dataset_copy.select(self.input_cols)
|
281
282
|
if not pd.isna(self.missing_values):
|
282
283
|
# Replace `self.missing_values` with null to avoid including it when computing states.
|
283
284
|
dataset_copy = dataset_copy.na.replace(self.missing_values, None)
|
@@ -308,7 +309,6 @@ class SimpleImputer(base.BaseTransformer):
|
|
308
309
|
return self
|
309
310
|
|
310
311
|
@telemetry.send_api_usage_telemetry(project=base.PROJECT, subproject=_SUBPROJECT)
|
311
|
-
@telemetry.add_stmt_params_to_df(project=base.PROJECT, subproject=_SUBPROJECT)
|
312
312
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
313
313
|
"""
|
314
314
|
Transform the input dataset by imputing the computed statistics in the input columns.
|