snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SpectralBiclustering(BaseTransformer):
|
57
58
|
r"""Spectral biclustering (Kluger, 2003)
|
58
59
|
For more details on this class, see [sklearn.cluster.SpectralBiclustering]
|
@@ -60,6 +61,49 @@ class SpectralBiclustering(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int or tuple (n_row_clusters, n_column_clusters), default=3
|
64
108
|
The number of row and column clusters in the checkerboard
|
65
109
|
structure.
|
@@ -111,42 +155,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
111
155
|
Used for randomizing the singular value decomposition and the k-means
|
112
156
|
initialization. Use an int to make the randomness deterministic.
|
113
157
|
See :term:`Glossary <random_state>`.
|
114
|
-
|
115
|
-
input_cols: Optional[Union[str, List[str]]]
|
116
|
-
A string or list of strings representing column names that contain features.
|
117
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
118
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
119
|
-
parameters are considered input columns.
|
120
|
-
|
121
|
-
label_cols: Optional[Union[str, List[str]]]
|
122
|
-
A string or list of strings representing column names that contain labels.
|
123
|
-
This is a required param for estimators, as there is no way to infer these
|
124
|
-
columns. If this parameter is not specified, then object is fitted without
|
125
|
-
labels (like a transformer).
|
126
|
-
|
127
|
-
output_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that will store the
|
129
|
-
output of predict and transform operations. The length of output_cols must
|
130
|
-
match the expected number of output columns from the specific estimator or
|
131
|
-
transformer class used.
|
132
|
-
If this parameter is not specified, output column names are derived by
|
133
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
134
|
-
column names work for estimator's predict() method, but output_cols must
|
135
|
-
be set explicitly for transformers.
|
136
|
-
|
137
|
-
sample_weight_col: Optional[str]
|
138
|
-
A string representing the column name containing the sample weights.
|
139
|
-
This argument is only required when working with weighted datasets.
|
140
|
-
|
141
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or a list of strings indicating column names to be excluded from any
|
143
|
-
operations (such as train, transform, or inference). These specified column(s)
|
144
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
145
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
146
|
-
columns, like index columns, during training or inference.
|
147
|
-
|
148
|
-
drop_input_cols: Optional[bool], default=False
|
149
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
150
158
|
"""
|
151
159
|
|
152
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -177,7 +185,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
177
185
|
self.set_passthrough_cols(passthrough_cols)
|
178
186
|
self.set_drop_input_cols(drop_input_cols)
|
179
187
|
self.set_sample_weight_col(sample_weight_col)
|
180
|
-
deps = set(
|
188
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
181
189
|
|
182
190
|
self._deps = list(deps)
|
183
191
|
|
@@ -195,13 +203,14 @@ class SpectralBiclustering(BaseTransformer):
|
|
195
203
|
args=init_args,
|
196
204
|
klass=sklearn.cluster.SpectralBiclustering
|
197
205
|
)
|
198
|
-
self._sklearn_object = sklearn.cluster.SpectralBiclustering(
|
206
|
+
self._sklearn_object: Any = sklearn.cluster.SpectralBiclustering(
|
199
207
|
**cleaned_up_init_args,
|
200
208
|
)
|
201
209
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
202
210
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
203
211
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
204
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralBiclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
212
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralBiclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
213
|
+
self._autogenerated = True
|
205
214
|
|
206
215
|
def _get_rand_id(self) -> str:
|
207
216
|
"""
|
@@ -257,54 +266,48 @@ class SpectralBiclustering(BaseTransformer):
|
|
257
266
|
self
|
258
267
|
"""
|
259
268
|
self._infer_input_output_cols(dataset)
|
260
|
-
if isinstance(dataset,
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
self.
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
269
|
+
if isinstance(dataset, DataFrame):
|
270
|
+
session = dataset._session
|
271
|
+
assert session is not None # keep mypy happy
|
272
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
273
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
274
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
275
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
276
|
+
|
277
|
+
# Specify input columns so column pruning will be enforced
|
278
|
+
selected_cols = self._get_active_columns()
|
279
|
+
if len(selected_cols) > 0:
|
280
|
+
dataset = dataset.select(selected_cols)
|
281
|
+
|
282
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
283
|
+
|
284
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
285
|
+
if SNOWML_SPROC_ENV in os.environ:
|
286
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
287
|
+
project=_PROJECT,
|
288
|
+
subproject=_SUBPROJECT,
|
289
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralBiclustering.__class__.__name__),
|
290
|
+
api_calls=[Session.call],
|
291
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
292
|
+
)
|
293
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
294
|
+
pd_df.columns = dataset.columns
|
295
|
+
dataset = pd_df
|
296
|
+
|
297
|
+
model_trainer = ModelTrainerBuilder.build(
|
298
|
+
estimator=self._sklearn_object,
|
299
|
+
dataset=dataset,
|
300
|
+
input_cols=self.input_cols,
|
301
|
+
label_cols=self.label_cols,
|
302
|
+
sample_weight_col=self.sample_weight_col,
|
303
|
+
autogenerated=self._autogenerated,
|
304
|
+
subproject=_SUBPROJECT
|
305
|
+
)
|
306
|
+
self._sklearn_object = model_trainer.train()
|
276
307
|
self._is_fitted = True
|
277
308
|
self._get_model_signatures(dataset)
|
278
309
|
return self
|
279
310
|
|
280
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
281
|
-
session = dataset._session
|
282
|
-
assert session is not None # keep mypy happy
|
283
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
284
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
285
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
286
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
287
|
-
|
288
|
-
# Specify input columns so column pruning will be enforced
|
289
|
-
selected_cols = self._get_active_columns()
|
290
|
-
if len(selected_cols) > 0:
|
291
|
-
dataset = dataset.select(selected_cols)
|
292
|
-
|
293
|
-
estimator = self._sklearn_object
|
294
|
-
assert estimator is not None # Keep mypy happy
|
295
|
-
|
296
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
|
-
|
298
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
299
|
-
dataset,
|
300
|
-
session,
|
301
|
-
estimator,
|
302
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
303
|
-
self.input_cols,
|
304
|
-
self.label_cols,
|
305
|
-
self.sample_weight_col,
|
306
|
-
)
|
307
|
-
|
308
311
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
309
312
|
if self._drop_input_cols:
|
310
313
|
return []
|
@@ -492,11 +495,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
492
495
|
subproject=_SUBPROJECT,
|
493
496
|
custom_tags=dict([("autogen", True)]),
|
494
497
|
)
|
495
|
-
@telemetry.add_stmt_params_to_df(
|
496
|
-
project=_PROJECT,
|
497
|
-
subproject=_SUBPROJECT,
|
498
|
-
custom_tags=dict([("autogen", True)]),
|
499
|
-
)
|
500
498
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
501
499
|
"""Method not supported for this class.
|
502
500
|
|
@@ -548,11 +546,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
548
546
|
subproject=_SUBPROJECT,
|
549
547
|
custom_tags=dict([("autogen", True)]),
|
550
548
|
)
|
551
|
-
@telemetry.add_stmt_params_to_df(
|
552
|
-
project=_PROJECT,
|
553
|
-
subproject=_SUBPROJECT,
|
554
|
-
custom_tags=dict([("autogen", True)]),
|
555
|
-
)
|
556
549
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
557
550
|
"""Method not supported for this class.
|
558
551
|
|
@@ -609,7 +602,8 @@ class SpectralBiclustering(BaseTransformer):
|
|
609
602
|
if False:
|
610
603
|
self.fit(dataset)
|
611
604
|
assert self._sklearn_object is not None
|
612
|
-
|
605
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
606
|
+
return labels
|
613
607
|
else:
|
614
608
|
raise NotImplementedError
|
615
609
|
|
@@ -645,6 +639,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
645
639
|
output_cols = []
|
646
640
|
|
647
641
|
# Make sure column names are valid snowflake identifiers.
|
642
|
+
assert output_cols is not None # Make MyPy happy
|
648
643
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
644
|
|
650
645
|
return rv
|
@@ -655,11 +650,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
655
650
|
subproject=_SUBPROJECT,
|
656
651
|
custom_tags=dict([("autogen", True)]),
|
657
652
|
)
|
658
|
-
@telemetry.add_stmt_params_to_df(
|
659
|
-
project=_PROJECT,
|
660
|
-
subproject=_SUBPROJECT,
|
661
|
-
custom_tags=dict([("autogen", True)]),
|
662
|
-
)
|
663
653
|
def predict_proba(
|
664
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
665
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +690,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
700
690
|
subproject=_SUBPROJECT,
|
701
691
|
custom_tags=dict([("autogen", True)]),
|
702
692
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
693
|
def predict_log_proba(
|
709
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,16 +726,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
741
726
|
return output_df
|
742
727
|
|
743
728
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
744
|
-
@telemetry.send_api_usage_telemetry(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
|
-
@telemetry.add_stmt_params_to_df(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
729
|
def decision_function(
|
755
730
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
756
731
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -849,11 +824,6 @@ class SpectralBiclustering(BaseTransformer):
|
|
849
824
|
subproject=_SUBPROJECT,
|
850
825
|
custom_tags=dict([("autogen", True)]),
|
851
826
|
)
|
852
|
-
@telemetry.add_stmt_params_to_df(
|
853
|
-
project=_PROJECT,
|
854
|
-
subproject=_SUBPROJECT,
|
855
|
-
custom_tags=dict([("autogen", True)]),
|
856
|
-
)
|
857
827
|
def kneighbors(
|
858
828
|
self,
|
859
829
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -913,9 +883,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
913
883
|
# For classifier, the type of predict is the same as the type of label
|
914
884
|
if self._sklearn_object._estimator_type == 'classifier':
|
915
885
|
# label columns is the desired type for output
|
916
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
886
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
917
887
|
# rename the output columns
|
918
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
888
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
919
889
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
890
|
([] if self._drop_input_cols else inputs)
|
921
891
|
+ outputs)
|