snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SpectralBiclustering(BaseTransformer):
57
58
  r"""Spectral biclustering (Kluger, 2003)
58
59
  For more details on this class, see [sklearn.cluster.SpectralBiclustering]
@@ -60,6 +61,49 @@ class SpectralBiclustering(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int or tuple (n_row_clusters, n_column_clusters), default=3
64
108
  The number of row and column clusters in the checkerboard
65
109
  structure.
@@ -111,42 +155,6 @@ class SpectralBiclustering(BaseTransformer):
111
155
  Used for randomizing the singular value decomposition and the k-means
112
156
  initialization. Use an int to make the randomness deterministic.
113
157
  See :term:`Glossary <random_state>`.
114
-
115
- input_cols: Optional[Union[str, List[str]]]
116
- A string or list of strings representing column names that contain features.
117
- If this parameter is not specified, all columns in the input DataFrame except
118
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
119
- parameters are considered input columns.
120
-
121
- label_cols: Optional[Union[str, List[str]]]
122
- A string or list of strings representing column names that contain labels.
123
- This is a required param for estimators, as there is no way to infer these
124
- columns. If this parameter is not specified, then object is fitted without
125
- labels (like a transformer).
126
-
127
- output_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that will store the
129
- output of predict and transform operations. The length of output_cols must
130
- match the expected number of output columns from the specific estimator or
131
- transformer class used.
132
- If this parameter is not specified, output column names are derived by
133
- adding an OUTPUT_ prefix to the label column names. These inferred output
134
- column names work for estimator's predict() method, but output_cols must
135
- be set explicitly for transformers.
136
-
137
- sample_weight_col: Optional[str]
138
- A string representing the column name containing the sample weights.
139
- This argument is only required when working with weighted datasets.
140
-
141
- passthrough_cols: Optional[Union[str, List[str]]]
142
- A string or a list of strings indicating column names to be excluded from any
143
- operations (such as train, transform, or inference). These specified column(s)
144
- will remain untouched throughout the process. This option is helpful in scenarios
145
- requiring automatic input_cols inference, but need to avoid using specific
146
- columns, like index columns, during training or inference.
147
-
148
- drop_input_cols: Optional[bool], default=False
149
- If set, the response of predict(), transform() methods will not contain input columns.
150
158
  """
151
159
 
152
160
  def __init__( # type: ignore[no-untyped-def]
@@ -177,7 +185,7 @@ class SpectralBiclustering(BaseTransformer):
177
185
  self.set_passthrough_cols(passthrough_cols)
178
186
  self.set_drop_input_cols(drop_input_cols)
179
187
  self.set_sample_weight_col(sample_weight_col)
180
- deps = set(SklearnWrapperProvider().dependencies)
188
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
181
189
 
182
190
  self._deps = list(deps)
183
191
 
@@ -195,13 +203,14 @@ class SpectralBiclustering(BaseTransformer):
195
203
  args=init_args,
196
204
  klass=sklearn.cluster.SpectralBiclustering
197
205
  )
198
- self._sklearn_object = sklearn.cluster.SpectralBiclustering(
206
+ self._sklearn_object: Any = sklearn.cluster.SpectralBiclustering(
199
207
  **cleaned_up_init_args,
200
208
  )
201
209
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
202
210
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
203
211
  self._snowpark_cols: Optional[List[str]] = self.input_cols
204
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralBiclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
212
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralBiclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
+ self._autogenerated = True
205
214
 
206
215
  def _get_rand_id(self) -> str:
207
216
  """
@@ -257,54 +266,48 @@ class SpectralBiclustering(BaseTransformer):
257
266
  self
258
267
  """
259
268
  self._infer_input_output_cols(dataset)
260
- if isinstance(dataset, pd.DataFrame):
261
- assert self._sklearn_object is not None # keep mypy happy
262
- self._sklearn_object = self._handlers.fit_pandas(
263
- dataset,
264
- self._sklearn_object,
265
- self.input_cols,
266
- self.label_cols,
267
- self.sample_weight_col
268
- )
269
- elif isinstance(dataset, DataFrame):
270
- self._fit_snowpark(dataset)
271
- else:
272
- raise TypeError(
273
- f"Unexpected dataset type: {type(dataset)}."
274
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
275
- )
269
+ if isinstance(dataset, DataFrame):
270
+ session = dataset._session
271
+ assert session is not None # keep mypy happy
272
+ # Validate that key package version in user workspace are supported in snowflake conda channel
273
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
274
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
275
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
276
+
277
+ # Specify input columns so column pruning will be enforced
278
+ selected_cols = self._get_active_columns()
279
+ if len(selected_cols) > 0:
280
+ dataset = dataset.select(selected_cols)
281
+
282
+ self._snowpark_cols = dataset.select(self.input_cols).columns
283
+
284
+ # If we are already in a stored procedure, no need to kick off another one.
285
+ if SNOWML_SPROC_ENV in os.environ:
286
+ statement_params = telemetry.get_function_usage_statement_params(
287
+ project=_PROJECT,
288
+ subproject=_SUBPROJECT,
289
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralBiclustering.__class__.__name__),
290
+ api_calls=[Session.call],
291
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
+ )
293
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
294
+ pd_df.columns = dataset.columns
295
+ dataset = pd_df
296
+
297
+ model_trainer = ModelTrainerBuilder.build(
298
+ estimator=self._sklearn_object,
299
+ dataset=dataset,
300
+ input_cols=self.input_cols,
301
+ label_cols=self.label_cols,
302
+ sample_weight_col=self.sample_weight_col,
303
+ autogenerated=self._autogenerated,
304
+ subproject=_SUBPROJECT
305
+ )
306
+ self._sklearn_object = model_trainer.train()
276
307
  self._is_fitted = True
277
308
  self._get_model_signatures(dataset)
278
309
  return self
279
310
 
280
- def _fit_snowpark(self, dataset: DataFrame) -> None:
281
- session = dataset._session
282
- assert session is not None # keep mypy happy
283
- # Validate that key package version in user workspace are supported in snowflake conda channel
284
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
285
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
286
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
287
-
288
- # Specify input columns so column pruning will be enforced
289
- selected_cols = self._get_active_columns()
290
- if len(selected_cols) > 0:
291
- dataset = dataset.select(selected_cols)
292
-
293
- estimator = self._sklearn_object
294
- assert estimator is not None # Keep mypy happy
295
-
296
- self._snowpark_cols = dataset.select(self.input_cols).columns
297
-
298
- self._sklearn_object = self._handlers.fit_snowpark(
299
- dataset,
300
- session,
301
- estimator,
302
- ["snowflake-snowpark-python"] + self._get_dependencies(),
303
- self.input_cols,
304
- self.label_cols,
305
- self.sample_weight_col,
306
- )
307
-
308
311
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
309
312
  if self._drop_input_cols:
310
313
  return []
@@ -492,11 +495,6 @@ class SpectralBiclustering(BaseTransformer):
492
495
  subproject=_SUBPROJECT,
493
496
  custom_tags=dict([("autogen", True)]),
494
497
  )
495
- @telemetry.add_stmt_params_to_df(
496
- project=_PROJECT,
497
- subproject=_SUBPROJECT,
498
- custom_tags=dict([("autogen", True)]),
499
- )
500
498
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
501
499
  """Method not supported for this class.
502
500
 
@@ -548,11 +546,6 @@ class SpectralBiclustering(BaseTransformer):
548
546
  subproject=_SUBPROJECT,
549
547
  custom_tags=dict([("autogen", True)]),
550
548
  )
551
- @telemetry.add_stmt_params_to_df(
552
- project=_PROJECT,
553
- subproject=_SUBPROJECT,
554
- custom_tags=dict([("autogen", True)]),
555
- )
556
549
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
557
550
  """Method not supported for this class.
558
551
 
@@ -609,7 +602,8 @@ class SpectralBiclustering(BaseTransformer):
609
602
  if False:
610
603
  self.fit(dataset)
611
604
  assert self._sklearn_object is not None
612
- return self._sklearn_object.labels_
605
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
606
+ return labels
613
607
  else:
614
608
  raise NotImplementedError
615
609
 
@@ -645,6 +639,7 @@ class SpectralBiclustering(BaseTransformer):
645
639
  output_cols = []
646
640
 
647
641
  # Make sure column names are valid snowflake identifiers.
642
+ assert output_cols is not None # Make MyPy happy
648
643
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
649
644
 
650
645
  return rv
@@ -655,11 +650,6 @@ class SpectralBiclustering(BaseTransformer):
655
650
  subproject=_SUBPROJECT,
656
651
  custom_tags=dict([("autogen", True)]),
657
652
  )
658
- @telemetry.add_stmt_params_to_df(
659
- project=_PROJECT,
660
- subproject=_SUBPROJECT,
661
- custom_tags=dict([("autogen", True)]),
662
- )
663
653
  def predict_proba(
664
654
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
665
655
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -700,11 +690,6 @@ class SpectralBiclustering(BaseTransformer):
700
690
  subproject=_SUBPROJECT,
701
691
  custom_tags=dict([("autogen", True)]),
702
692
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
693
  def predict_log_proba(
709
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
710
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,16 +726,6 @@ class SpectralBiclustering(BaseTransformer):
741
726
  return output_df
742
727
 
743
728
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
744
- @telemetry.send_api_usage_telemetry(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
- @telemetry.add_stmt_params_to_df(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
729
  def decision_function(
755
730
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
756
731
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -849,11 +824,6 @@ class SpectralBiclustering(BaseTransformer):
849
824
  subproject=_SUBPROJECT,
850
825
  custom_tags=dict([("autogen", True)]),
851
826
  )
852
- @telemetry.add_stmt_params_to_df(
853
- project=_PROJECT,
854
- subproject=_SUBPROJECT,
855
- custom_tags=dict([("autogen", True)]),
856
- )
857
827
  def kneighbors(
858
828
  self,
859
829
  dataset: Union[DataFrame, pd.DataFrame],
@@ -913,9 +883,9 @@ class SpectralBiclustering(BaseTransformer):
913
883
  # For classifier, the type of predict is the same as the type of label
914
884
  if self._sklearn_object._estimator_type == 'classifier':
915
885
  # label columns is the desired type for output
916
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
886
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
917
887
  # rename the output columns
918
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
888
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
919
889
  self._model_signature_dict["predict"] = ModelSignature(inputs,
920
890
  ([] if self._drop_input_cols else inputs)
921
891
  + outputs)