snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GradientBoostingClassifier(BaseTransformer):
|
57
58
|
r"""Gradient Boosting for classification
|
58
59
|
For more details on this class, see [sklearn.ensemble.GradientBoostingClassifier]
|
@@ -60,6 +61,51 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'log_loss', 'exponential'}, default='log_loss'
|
64
110
|
The loss function to be optimized. 'log_loss' refers to binomial and
|
65
111
|
multinomial deviance, the same as used in logistic regression.
|
@@ -219,42 +265,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
219
265
|
``ccp_alpha`` will be chosen. By default, no pruning is performed.
|
220
266
|
Values must be in the range `[0.0, inf)`.
|
221
267
|
See :ref:`minimal_cost_complexity_pruning` for details.
|
222
|
-
|
223
|
-
input_cols: Optional[Union[str, List[str]]]
|
224
|
-
A string or list of strings representing column names that contain features.
|
225
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
226
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
227
|
-
parameters are considered input columns.
|
228
|
-
|
229
|
-
label_cols: Optional[Union[str, List[str]]]
|
230
|
-
A string or list of strings representing column names that contain labels.
|
231
|
-
This is a required param for estimators, as there is no way to infer these
|
232
|
-
columns. If this parameter is not specified, then object is fitted without
|
233
|
-
labels (like a transformer).
|
234
|
-
|
235
|
-
output_cols: Optional[Union[str, List[str]]]
|
236
|
-
A string or list of strings representing column names that will store the
|
237
|
-
output of predict and transform operations. The length of output_cols must
|
238
|
-
match the expected number of output columns from the specific estimator or
|
239
|
-
transformer class used.
|
240
|
-
If this parameter is not specified, output column names are derived by
|
241
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
242
|
-
column names work for estimator's predict() method, but output_cols must
|
243
|
-
be set explicitly for transformers.
|
244
|
-
|
245
|
-
sample_weight_col: Optional[str]
|
246
|
-
A string representing the column name containing the sample weights.
|
247
|
-
This argument is only required when working with weighted datasets.
|
248
|
-
|
249
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
250
|
-
A string or a list of strings indicating column names to be excluded from any
|
251
|
-
operations (such as train, transform, or inference). These specified column(s)
|
252
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
253
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
254
|
-
columns, like index columns, during training or inference.
|
255
|
-
|
256
|
-
drop_input_cols: Optional[bool], default=False
|
257
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
258
268
|
"""
|
259
269
|
|
260
270
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -295,7 +305,7 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
295
305
|
self.set_passthrough_cols(passthrough_cols)
|
296
306
|
self.set_drop_input_cols(drop_input_cols)
|
297
307
|
self.set_sample_weight_col(sample_weight_col)
|
298
|
-
deps = set(
|
308
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
299
309
|
|
300
310
|
self._deps = list(deps)
|
301
311
|
|
@@ -323,13 +333,14 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
323
333
|
args=init_args,
|
324
334
|
klass=sklearn.ensemble.GradientBoostingClassifier
|
325
335
|
)
|
326
|
-
self._sklearn_object = sklearn.ensemble.GradientBoostingClassifier(
|
336
|
+
self._sklearn_object: Any = sklearn.ensemble.GradientBoostingClassifier(
|
327
337
|
**cleaned_up_init_args,
|
328
338
|
)
|
329
339
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
330
340
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
331
341
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
332
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
342
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
343
|
+
self._autogenerated = True
|
333
344
|
|
334
345
|
def _get_rand_id(self) -> str:
|
335
346
|
"""
|
@@ -385,54 +396,48 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
385
396
|
self
|
386
397
|
"""
|
387
398
|
self._infer_input_output_cols(dataset)
|
388
|
-
if isinstance(dataset,
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
self.
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
399
|
+
if isinstance(dataset, DataFrame):
|
400
|
+
session = dataset._session
|
401
|
+
assert session is not None # keep mypy happy
|
402
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
403
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
404
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
405
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
406
|
+
|
407
|
+
# Specify input columns so column pruning will be enforced
|
408
|
+
selected_cols = self._get_active_columns()
|
409
|
+
if len(selected_cols) > 0:
|
410
|
+
dataset = dataset.select(selected_cols)
|
411
|
+
|
412
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
413
|
+
|
414
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
415
|
+
if SNOWML_SPROC_ENV in os.environ:
|
416
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
417
|
+
project=_PROJECT,
|
418
|
+
subproject=_SUBPROJECT,
|
419
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingClassifier.__class__.__name__),
|
420
|
+
api_calls=[Session.call],
|
421
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
422
|
+
)
|
423
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
424
|
+
pd_df.columns = dataset.columns
|
425
|
+
dataset = pd_df
|
426
|
+
|
427
|
+
model_trainer = ModelTrainerBuilder.build(
|
428
|
+
estimator=self._sklearn_object,
|
429
|
+
dataset=dataset,
|
430
|
+
input_cols=self.input_cols,
|
431
|
+
label_cols=self.label_cols,
|
432
|
+
sample_weight_col=self.sample_weight_col,
|
433
|
+
autogenerated=self._autogenerated,
|
434
|
+
subproject=_SUBPROJECT
|
435
|
+
)
|
436
|
+
self._sklearn_object = model_trainer.train()
|
404
437
|
self._is_fitted = True
|
405
438
|
self._get_model_signatures(dataset)
|
406
439
|
return self
|
407
440
|
|
408
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
409
|
-
session = dataset._session
|
410
|
-
assert session is not None # keep mypy happy
|
411
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
412
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
413
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
414
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
415
|
-
|
416
|
-
# Specify input columns so column pruning will be enforced
|
417
|
-
selected_cols = self._get_active_columns()
|
418
|
-
if len(selected_cols) > 0:
|
419
|
-
dataset = dataset.select(selected_cols)
|
420
|
-
|
421
|
-
estimator = self._sklearn_object
|
422
|
-
assert estimator is not None # Keep mypy happy
|
423
|
-
|
424
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
425
|
-
|
426
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
427
|
-
dataset,
|
428
|
-
session,
|
429
|
-
estimator,
|
430
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
431
|
-
self.input_cols,
|
432
|
-
self.label_cols,
|
433
|
-
self.sample_weight_col,
|
434
|
-
)
|
435
|
-
|
436
441
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
437
442
|
if self._drop_input_cols:
|
438
443
|
return []
|
@@ -620,11 +625,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
620
625
|
subproject=_SUBPROJECT,
|
621
626
|
custom_tags=dict([("autogen", True)]),
|
622
627
|
)
|
623
|
-
@telemetry.add_stmt_params_to_df(
|
624
|
-
project=_PROJECT,
|
625
|
-
subproject=_SUBPROJECT,
|
626
|
-
custom_tags=dict([("autogen", True)]),
|
627
|
-
)
|
628
628
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
629
629
|
"""Predict class for X
|
630
630
|
For more details on this function, see [sklearn.ensemble.GradientBoostingClassifier.predict]
|
@@ -678,11 +678,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
678
678
|
subproject=_SUBPROJECT,
|
679
679
|
custom_tags=dict([("autogen", True)]),
|
680
680
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
681
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
687
682
|
"""Method not supported for this class.
|
688
683
|
|
@@ -739,7 +734,8 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
739
734
|
if False:
|
740
735
|
self.fit(dataset)
|
741
736
|
assert self._sklearn_object is not None
|
742
|
-
|
737
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
738
|
+
return labels
|
743
739
|
else:
|
744
740
|
raise NotImplementedError
|
745
741
|
|
@@ -775,6 +771,7 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
775
771
|
output_cols = []
|
776
772
|
|
777
773
|
# Make sure column names are valid snowflake identifiers.
|
774
|
+
assert output_cols is not None # Make MyPy happy
|
778
775
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
779
776
|
|
780
777
|
return rv
|
@@ -785,11 +782,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
785
782
|
subproject=_SUBPROJECT,
|
786
783
|
custom_tags=dict([("autogen", True)]),
|
787
784
|
)
|
788
|
-
@telemetry.add_stmt_params_to_df(
|
789
|
-
project=_PROJECT,
|
790
|
-
subproject=_SUBPROJECT,
|
791
|
-
custom_tags=dict([("autogen", True)]),
|
792
|
-
)
|
793
785
|
def predict_proba(
|
794
786
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
795
787
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -832,11 +824,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
832
824
|
subproject=_SUBPROJECT,
|
833
825
|
custom_tags=dict([("autogen", True)]),
|
834
826
|
)
|
835
|
-
@telemetry.add_stmt_params_to_df(
|
836
|
-
project=_PROJECT,
|
837
|
-
subproject=_SUBPROJECT,
|
838
|
-
custom_tags=dict([("autogen", True)]),
|
839
|
-
)
|
840
827
|
def predict_log_proba(
|
841
828
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
842
829
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -875,16 +862,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
875
862
|
return output_df
|
876
863
|
|
877
864
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
878
|
-
@telemetry.send_api_usage_telemetry(
|
879
|
-
project=_PROJECT,
|
880
|
-
subproject=_SUBPROJECT,
|
881
|
-
custom_tags=dict([("autogen", True)]),
|
882
|
-
)
|
883
|
-
@telemetry.add_stmt_params_to_df(
|
884
|
-
project=_PROJECT,
|
885
|
-
subproject=_SUBPROJECT,
|
886
|
-
custom_tags=dict([("autogen", True)]),
|
887
|
-
)
|
888
865
|
def decision_function(
|
889
866
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
890
867
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -987,11 +964,6 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
987
964
|
subproject=_SUBPROJECT,
|
988
965
|
custom_tags=dict([("autogen", True)]),
|
989
966
|
)
|
990
|
-
@telemetry.add_stmt_params_to_df(
|
991
|
-
project=_PROJECT,
|
992
|
-
subproject=_SUBPROJECT,
|
993
|
-
custom_tags=dict([("autogen", True)]),
|
994
|
-
)
|
995
967
|
def kneighbors(
|
996
968
|
self,
|
997
969
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1051,9 +1023,9 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
1051
1023
|
# For classifier, the type of predict is the same as the type of label
|
1052
1024
|
if self._sklearn_object._estimator_type == 'classifier':
|
1053
1025
|
# label columns is the desired type for output
|
1054
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1026
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1055
1027
|
# rename the output columns
|
1056
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1028
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1057
1029
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1058
1030
|
([] if self._drop_input_cols else inputs)
|
1059
1031
|
+ outputs)
|