snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GradientBoostingClassifier(BaseTransformer):
57
58
  r"""Gradient Boosting for classification
58
59
  For more details on this class, see [sklearn.ensemble.GradientBoostingClassifier]
@@ -60,6 +61,51 @@ class GradientBoostingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'log_loss', 'exponential'}, default='log_loss'
64
110
  The loss function to be optimized. 'log_loss' refers to binomial and
65
111
  multinomial deviance, the same as used in logistic regression.
@@ -219,42 +265,6 @@ class GradientBoostingClassifier(BaseTransformer):
219
265
  ``ccp_alpha`` will be chosen. By default, no pruning is performed.
220
266
  Values must be in the range `[0.0, inf)`.
221
267
  See :ref:`minimal_cost_complexity_pruning` for details.
222
-
223
- input_cols: Optional[Union[str, List[str]]]
224
- A string or list of strings representing column names that contain features.
225
- If this parameter is not specified, all columns in the input DataFrame except
226
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
227
- parameters are considered input columns.
228
-
229
- label_cols: Optional[Union[str, List[str]]]
230
- A string or list of strings representing column names that contain labels.
231
- This is a required param for estimators, as there is no way to infer these
232
- columns. If this parameter is not specified, then object is fitted without
233
- labels (like a transformer).
234
-
235
- output_cols: Optional[Union[str, List[str]]]
236
- A string or list of strings representing column names that will store the
237
- output of predict and transform operations. The length of output_cols must
238
- match the expected number of output columns from the specific estimator or
239
- transformer class used.
240
- If this parameter is not specified, output column names are derived by
241
- adding an OUTPUT_ prefix to the label column names. These inferred output
242
- column names work for estimator's predict() method, but output_cols must
243
- be set explicitly for transformers.
244
-
245
- sample_weight_col: Optional[str]
246
- A string representing the column name containing the sample weights.
247
- This argument is only required when working with weighted datasets.
248
-
249
- passthrough_cols: Optional[Union[str, List[str]]]
250
- A string or a list of strings indicating column names to be excluded from any
251
- operations (such as train, transform, or inference). These specified column(s)
252
- will remain untouched throughout the process. This option is helpful in scenarios
253
- requiring automatic input_cols inference, but need to avoid using specific
254
- columns, like index columns, during training or inference.
255
-
256
- drop_input_cols: Optional[bool], default=False
257
- If set, the response of predict(), transform() methods will not contain input columns.
258
268
  """
259
269
 
260
270
  def __init__( # type: ignore[no-untyped-def]
@@ -295,7 +305,7 @@ class GradientBoostingClassifier(BaseTransformer):
295
305
  self.set_passthrough_cols(passthrough_cols)
296
306
  self.set_drop_input_cols(drop_input_cols)
297
307
  self.set_sample_weight_col(sample_weight_col)
298
- deps = set(SklearnWrapperProvider().dependencies)
308
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
299
309
 
300
310
  self._deps = list(deps)
301
311
 
@@ -323,13 +333,14 @@ class GradientBoostingClassifier(BaseTransformer):
323
333
  args=init_args,
324
334
  klass=sklearn.ensemble.GradientBoostingClassifier
325
335
  )
326
- self._sklearn_object = sklearn.ensemble.GradientBoostingClassifier(
336
+ self._sklearn_object: Any = sklearn.ensemble.GradientBoostingClassifier(
327
337
  **cleaned_up_init_args,
328
338
  )
329
339
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
330
340
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
331
341
  self._snowpark_cols: Optional[List[str]] = self.input_cols
332
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
342
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
343
+ self._autogenerated = True
333
344
 
334
345
  def _get_rand_id(self) -> str:
335
346
  """
@@ -385,54 +396,48 @@ class GradientBoostingClassifier(BaseTransformer):
385
396
  self
386
397
  """
387
398
  self._infer_input_output_cols(dataset)
388
- if isinstance(dataset, pd.DataFrame):
389
- assert self._sklearn_object is not None # keep mypy happy
390
- self._sklearn_object = self._handlers.fit_pandas(
391
- dataset,
392
- self._sklearn_object,
393
- self.input_cols,
394
- self.label_cols,
395
- self.sample_weight_col
396
- )
397
- elif isinstance(dataset, DataFrame):
398
- self._fit_snowpark(dataset)
399
- else:
400
- raise TypeError(
401
- f"Unexpected dataset type: {type(dataset)}."
402
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
403
- )
399
+ if isinstance(dataset, DataFrame):
400
+ session = dataset._session
401
+ assert session is not None # keep mypy happy
402
+ # Validate that key package version in user workspace are supported in snowflake conda channel
403
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
404
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
405
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
406
+
407
+ # Specify input columns so column pruning will be enforced
408
+ selected_cols = self._get_active_columns()
409
+ if len(selected_cols) > 0:
410
+ dataset = dataset.select(selected_cols)
411
+
412
+ self._snowpark_cols = dataset.select(self.input_cols).columns
413
+
414
+ # If we are already in a stored procedure, no need to kick off another one.
415
+ if SNOWML_SPROC_ENV in os.environ:
416
+ statement_params = telemetry.get_function_usage_statement_params(
417
+ project=_PROJECT,
418
+ subproject=_SUBPROJECT,
419
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingClassifier.__class__.__name__),
420
+ api_calls=[Session.call],
421
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
422
+ )
423
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
424
+ pd_df.columns = dataset.columns
425
+ dataset = pd_df
426
+
427
+ model_trainer = ModelTrainerBuilder.build(
428
+ estimator=self._sklearn_object,
429
+ dataset=dataset,
430
+ input_cols=self.input_cols,
431
+ label_cols=self.label_cols,
432
+ sample_weight_col=self.sample_weight_col,
433
+ autogenerated=self._autogenerated,
434
+ subproject=_SUBPROJECT
435
+ )
436
+ self._sklearn_object = model_trainer.train()
404
437
  self._is_fitted = True
405
438
  self._get_model_signatures(dataset)
406
439
  return self
407
440
 
408
- def _fit_snowpark(self, dataset: DataFrame) -> None:
409
- session = dataset._session
410
- assert session is not None # keep mypy happy
411
- # Validate that key package version in user workspace are supported in snowflake conda channel
412
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
413
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
414
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
415
-
416
- # Specify input columns so column pruning will be enforced
417
- selected_cols = self._get_active_columns()
418
- if len(selected_cols) > 0:
419
- dataset = dataset.select(selected_cols)
420
-
421
- estimator = self._sklearn_object
422
- assert estimator is not None # Keep mypy happy
423
-
424
- self._snowpark_cols = dataset.select(self.input_cols).columns
425
-
426
- self._sklearn_object = self._handlers.fit_snowpark(
427
- dataset,
428
- session,
429
- estimator,
430
- ["snowflake-snowpark-python"] + self._get_dependencies(),
431
- self.input_cols,
432
- self.label_cols,
433
- self.sample_weight_col,
434
- )
435
-
436
441
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
437
442
  if self._drop_input_cols:
438
443
  return []
@@ -620,11 +625,6 @@ class GradientBoostingClassifier(BaseTransformer):
620
625
  subproject=_SUBPROJECT,
621
626
  custom_tags=dict([("autogen", True)]),
622
627
  )
623
- @telemetry.add_stmt_params_to_df(
624
- project=_PROJECT,
625
- subproject=_SUBPROJECT,
626
- custom_tags=dict([("autogen", True)]),
627
- )
628
628
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
629
629
  """Predict class for X
630
630
  For more details on this function, see [sklearn.ensemble.GradientBoostingClassifier.predict]
@@ -678,11 +678,6 @@ class GradientBoostingClassifier(BaseTransformer):
678
678
  subproject=_SUBPROJECT,
679
679
  custom_tags=dict([("autogen", True)]),
680
680
  )
681
- @telemetry.add_stmt_params_to_df(
682
- project=_PROJECT,
683
- subproject=_SUBPROJECT,
684
- custom_tags=dict([("autogen", True)]),
685
- )
686
681
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
687
682
  """Method not supported for this class.
688
683
 
@@ -739,7 +734,8 @@ class GradientBoostingClassifier(BaseTransformer):
739
734
  if False:
740
735
  self.fit(dataset)
741
736
  assert self._sklearn_object is not None
742
- return self._sklearn_object.labels_
737
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
738
+ return labels
743
739
  else:
744
740
  raise NotImplementedError
745
741
 
@@ -775,6 +771,7 @@ class GradientBoostingClassifier(BaseTransformer):
775
771
  output_cols = []
776
772
 
777
773
  # Make sure column names are valid snowflake identifiers.
774
+ assert output_cols is not None # Make MyPy happy
778
775
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
779
776
 
780
777
  return rv
@@ -785,11 +782,6 @@ class GradientBoostingClassifier(BaseTransformer):
785
782
  subproject=_SUBPROJECT,
786
783
  custom_tags=dict([("autogen", True)]),
787
784
  )
788
- @telemetry.add_stmt_params_to_df(
789
- project=_PROJECT,
790
- subproject=_SUBPROJECT,
791
- custom_tags=dict([("autogen", True)]),
792
- )
793
785
  def predict_proba(
794
786
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
795
787
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -832,11 +824,6 @@ class GradientBoostingClassifier(BaseTransformer):
832
824
  subproject=_SUBPROJECT,
833
825
  custom_tags=dict([("autogen", True)]),
834
826
  )
835
- @telemetry.add_stmt_params_to_df(
836
- project=_PROJECT,
837
- subproject=_SUBPROJECT,
838
- custom_tags=dict([("autogen", True)]),
839
- )
840
827
  def predict_log_proba(
841
828
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
842
829
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -875,16 +862,6 @@ class GradientBoostingClassifier(BaseTransformer):
875
862
  return output_df
876
863
 
877
864
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
878
- @telemetry.send_api_usage_telemetry(
879
- project=_PROJECT,
880
- subproject=_SUBPROJECT,
881
- custom_tags=dict([("autogen", True)]),
882
- )
883
- @telemetry.add_stmt_params_to_df(
884
- project=_PROJECT,
885
- subproject=_SUBPROJECT,
886
- custom_tags=dict([("autogen", True)]),
887
- )
888
865
  def decision_function(
889
866
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
890
867
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -987,11 +964,6 @@ class GradientBoostingClassifier(BaseTransformer):
987
964
  subproject=_SUBPROJECT,
988
965
  custom_tags=dict([("autogen", True)]),
989
966
  )
990
- @telemetry.add_stmt_params_to_df(
991
- project=_PROJECT,
992
- subproject=_SUBPROJECT,
993
- custom_tags=dict([("autogen", True)]),
994
- )
995
967
  def kneighbors(
996
968
  self,
997
969
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1051,9 +1023,9 @@ class GradientBoostingClassifier(BaseTransformer):
1051
1023
  # For classifier, the type of predict is the same as the type of label
1052
1024
  if self._sklearn_object._estimator_type == 'classifier':
1053
1025
  # label columns is the desired type for output
1054
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1026
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1055
1027
  # rename the output columns
1056
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1028
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1057
1029
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1058
1030
  ([] if self._drop_input_cols else inputs)
1059
1031
  + outputs)