snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class BaggingRegressor(BaseTransformer):
57
58
  r"""A Bagging regressor
58
59
  For more details on this class, see [sklearn.ensemble.BaggingRegressor]
@@ -60,6 +61,51 @@ class BaggingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: object, default=None
64
110
  The base estimator to fit on random subsets of the dataset.
65
111
  If None, then the base estimator is a
@@ -118,42 +164,6 @@ class BaggingRegressor(BaseTransformer):
118
164
 
119
165
  base_estimator: object, default="deprecated"
120
166
  Use `estimator` instead.
121
-
122
- input_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that contain features.
124
- If this parameter is not specified, all columns in the input DataFrame except
125
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
126
- parameters are considered input columns.
127
-
128
- label_cols: Optional[Union[str, List[str]]]
129
- A string or list of strings representing column names that contain labels.
130
- This is a required param for estimators, as there is no way to infer these
131
- columns. If this parameter is not specified, then object is fitted without
132
- labels (like a transformer).
133
-
134
- output_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that will store the
136
- output of predict and transform operations. The length of output_cols must
137
- match the expected number of output columns from the specific estimator or
138
- transformer class used.
139
- If this parameter is not specified, output column names are derived by
140
- adding an OUTPUT_ prefix to the label column names. These inferred output
141
- column names work for estimator's predict() method, but output_cols must
142
- be set explicitly for transformers.
143
-
144
- sample_weight_col: Optional[str]
145
- A string representing the column name containing the sample weights.
146
- This argument is only required when working with weighted datasets.
147
-
148
- passthrough_cols: Optional[Union[str, List[str]]]
149
- A string or a list of strings indicating column names to be excluded from any
150
- operations (such as train, transform, or inference). These specified column(s)
151
- will remain untouched throughout the process. This option is helpful in scenarios
152
- requiring automatic input_cols inference, but need to avoid using specific
153
- columns, like index columns, during training or inference.
154
-
155
- drop_input_cols: Optional[bool], default=False
156
- If set, the response of predict(), transform() methods will not contain input columns.
157
167
  """
158
168
 
159
169
  def __init__( # type: ignore[no-untyped-def]
@@ -186,7 +196,7 @@ class BaggingRegressor(BaseTransformer):
186
196
  self.set_passthrough_cols(passthrough_cols)
187
197
  self.set_drop_input_cols(drop_input_cols)
188
198
  self.set_sample_weight_col(sample_weight_col)
189
- deps = set(SklearnWrapperProvider().dependencies)
199
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
190
200
  deps = deps | gather_dependencies(estimator)
191
201
  deps = deps | gather_dependencies(base_estimator)
192
202
  self._deps = list(deps)
@@ -208,13 +218,14 @@ class BaggingRegressor(BaseTransformer):
208
218
  args=init_args,
209
219
  klass=sklearn.ensemble.BaggingRegressor
210
220
  )
211
- self._sklearn_object = sklearn.ensemble.BaggingRegressor(
221
+ self._sklearn_object: Any = sklearn.ensemble.BaggingRegressor(
212
222
  **cleaned_up_init_args,
213
223
  )
214
224
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
215
225
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
216
226
  self._snowpark_cols: Optional[List[str]] = self.input_cols
217
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
227
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._autogenerated = True
218
229
 
219
230
  def _get_rand_id(self) -> str:
220
231
  """
@@ -270,54 +281,48 @@ class BaggingRegressor(BaseTransformer):
270
281
  self
271
282
  """
272
283
  self._infer_input_output_cols(dataset)
273
- if isinstance(dataset, pd.DataFrame):
274
- assert self._sklearn_object is not None # keep mypy happy
275
- self._sklearn_object = self._handlers.fit_pandas(
276
- dataset,
277
- self._sklearn_object,
278
- self.input_cols,
279
- self.label_cols,
280
- self.sample_weight_col
281
- )
282
- elif isinstance(dataset, DataFrame):
283
- self._fit_snowpark(dataset)
284
- else:
285
- raise TypeError(
286
- f"Unexpected dataset type: {type(dataset)}."
287
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
288
- )
284
+ if isinstance(dataset, DataFrame):
285
+ session = dataset._session
286
+ assert session is not None # keep mypy happy
287
+ # Validate that key package version in user workspace are supported in snowflake conda channel
288
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
289
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
290
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
291
+
292
+ # Specify input columns so column pruning will be enforced
293
+ selected_cols = self._get_active_columns()
294
+ if len(selected_cols) > 0:
295
+ dataset = dataset.select(selected_cols)
296
+
297
+ self._snowpark_cols = dataset.select(self.input_cols).columns
298
+
299
+ # If we are already in a stored procedure, no need to kick off another one.
300
+ if SNOWML_SPROC_ENV in os.environ:
301
+ statement_params = telemetry.get_function_usage_statement_params(
302
+ project=_PROJECT,
303
+ subproject=_SUBPROJECT,
304
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
305
+ api_calls=[Session.call],
306
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
307
+ )
308
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
309
+ pd_df.columns = dataset.columns
310
+ dataset = pd_df
311
+
312
+ model_trainer = ModelTrainerBuilder.build(
313
+ estimator=self._sklearn_object,
314
+ dataset=dataset,
315
+ input_cols=self.input_cols,
316
+ label_cols=self.label_cols,
317
+ sample_weight_col=self.sample_weight_col,
318
+ autogenerated=self._autogenerated,
319
+ subproject=_SUBPROJECT
320
+ )
321
+ self._sklearn_object = model_trainer.train()
289
322
  self._is_fitted = True
290
323
  self._get_model_signatures(dataset)
291
324
  return self
292
325
 
293
- def _fit_snowpark(self, dataset: DataFrame) -> None:
294
- session = dataset._session
295
- assert session is not None # keep mypy happy
296
- # Validate that key package version in user workspace are supported in snowflake conda channel
297
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
298
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
299
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
300
-
301
- # Specify input columns so column pruning will be enforced
302
- selected_cols = self._get_active_columns()
303
- if len(selected_cols) > 0:
304
- dataset = dataset.select(selected_cols)
305
-
306
- estimator = self._sklearn_object
307
- assert estimator is not None # Keep mypy happy
308
-
309
- self._snowpark_cols = dataset.select(self.input_cols).columns
310
-
311
- self._sklearn_object = self._handlers.fit_snowpark(
312
- dataset,
313
- session,
314
- estimator,
315
- ["snowflake-snowpark-python"] + self._get_dependencies(),
316
- self.input_cols,
317
- self.label_cols,
318
- self.sample_weight_col,
319
- )
320
-
321
326
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
322
327
  if self._drop_input_cols:
323
328
  return []
@@ -505,11 +510,6 @@ class BaggingRegressor(BaseTransformer):
505
510
  subproject=_SUBPROJECT,
506
511
  custom_tags=dict([("autogen", True)]),
507
512
  )
508
- @telemetry.add_stmt_params_to_df(
509
- project=_PROJECT,
510
- subproject=_SUBPROJECT,
511
- custom_tags=dict([("autogen", True)]),
512
- )
513
513
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
514
514
  """Predict regression target for X
515
515
  For more details on this function, see [sklearn.ensemble.BaggingRegressor.predict]
@@ -563,11 +563,6 @@ class BaggingRegressor(BaseTransformer):
563
563
  subproject=_SUBPROJECT,
564
564
  custom_tags=dict([("autogen", True)]),
565
565
  )
566
- @telemetry.add_stmt_params_to_df(
567
- project=_PROJECT,
568
- subproject=_SUBPROJECT,
569
- custom_tags=dict([("autogen", True)]),
570
- )
571
566
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
572
567
  """Method not supported for this class.
573
568
 
@@ -624,7 +619,8 @@ class BaggingRegressor(BaseTransformer):
624
619
  if False:
625
620
  self.fit(dataset)
626
621
  assert self._sklearn_object is not None
627
- return self._sklearn_object.labels_
622
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
623
+ return labels
628
624
  else:
629
625
  raise NotImplementedError
630
626
 
@@ -660,6 +656,7 @@ class BaggingRegressor(BaseTransformer):
660
656
  output_cols = []
661
657
 
662
658
  # Make sure column names are valid snowflake identifiers.
659
+ assert output_cols is not None # Make MyPy happy
663
660
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
664
661
 
665
662
  return rv
@@ -670,11 +667,6 @@ class BaggingRegressor(BaseTransformer):
670
667
  subproject=_SUBPROJECT,
671
668
  custom_tags=dict([("autogen", True)]),
672
669
  )
673
- @telemetry.add_stmt_params_to_df(
674
- project=_PROJECT,
675
- subproject=_SUBPROJECT,
676
- custom_tags=dict([("autogen", True)]),
677
- )
678
670
  def predict_proba(
679
671
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
680
672
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -715,11 +707,6 @@ class BaggingRegressor(BaseTransformer):
715
707
  subproject=_SUBPROJECT,
716
708
  custom_tags=dict([("autogen", True)]),
717
709
  )
718
- @telemetry.add_stmt_params_to_df(
719
- project=_PROJECT,
720
- subproject=_SUBPROJECT,
721
- custom_tags=dict([("autogen", True)]),
722
- )
723
710
  def predict_log_proba(
724
711
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
725
712
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -756,16 +743,6 @@ class BaggingRegressor(BaseTransformer):
756
743
  return output_df
757
744
 
758
745
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
759
- @telemetry.send_api_usage_telemetry(
760
- project=_PROJECT,
761
- subproject=_SUBPROJECT,
762
- custom_tags=dict([("autogen", True)]),
763
- )
764
- @telemetry.add_stmt_params_to_df(
765
- project=_PROJECT,
766
- subproject=_SUBPROJECT,
767
- custom_tags=dict([("autogen", True)]),
768
- )
769
746
  def decision_function(
770
747
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
771
748
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -866,11 +843,6 @@ class BaggingRegressor(BaseTransformer):
866
843
  subproject=_SUBPROJECT,
867
844
  custom_tags=dict([("autogen", True)]),
868
845
  )
869
- @telemetry.add_stmt_params_to_df(
870
- project=_PROJECT,
871
- subproject=_SUBPROJECT,
872
- custom_tags=dict([("autogen", True)]),
873
- )
874
846
  def kneighbors(
875
847
  self,
876
848
  dataset: Union[DataFrame, pd.DataFrame],
@@ -930,9 +902,9 @@ class BaggingRegressor(BaseTransformer):
930
902
  # For classifier, the type of predict is the same as the type of label
931
903
  if self._sklearn_object._estimator_type == 'classifier':
932
904
  # label columns is the desired type for output
933
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
905
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
934
906
  # rename the output columns
935
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
907
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
936
908
  self._model_signature_dict["predict"] = ModelSignature(inputs,
937
909
  ([] if self._drop_input_cols else inputs)
938
910
  + outputs)