snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class BaggingRegressor(BaseTransformer):
|
57
58
|
r"""A Bagging regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.BaggingRegressor]
|
@@ -60,6 +61,51 @@ class BaggingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
The base estimator to fit on random subsets of the dataset.
|
65
111
|
If None, then the base estimator is a
|
@@ -118,42 +164,6 @@ class BaggingRegressor(BaseTransformer):
|
|
118
164
|
|
119
165
|
base_estimator: object, default="deprecated"
|
120
166
|
Use `estimator` instead.
|
121
|
-
|
122
|
-
input_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that contain features.
|
124
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
125
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
126
|
-
parameters are considered input columns.
|
127
|
-
|
128
|
-
label_cols: Optional[Union[str, List[str]]]
|
129
|
-
A string or list of strings representing column names that contain labels.
|
130
|
-
This is a required param for estimators, as there is no way to infer these
|
131
|
-
columns. If this parameter is not specified, then object is fitted without
|
132
|
-
labels (like a transformer).
|
133
|
-
|
134
|
-
output_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that will store the
|
136
|
-
output of predict and transform operations. The length of output_cols must
|
137
|
-
match the expected number of output columns from the specific estimator or
|
138
|
-
transformer class used.
|
139
|
-
If this parameter is not specified, output column names are derived by
|
140
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
141
|
-
column names work for estimator's predict() method, but output_cols must
|
142
|
-
be set explicitly for transformers.
|
143
|
-
|
144
|
-
sample_weight_col: Optional[str]
|
145
|
-
A string representing the column name containing the sample weights.
|
146
|
-
This argument is only required when working with weighted datasets.
|
147
|
-
|
148
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or a list of strings indicating column names to be excluded from any
|
150
|
-
operations (such as train, transform, or inference). These specified column(s)
|
151
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
152
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
153
|
-
columns, like index columns, during training or inference.
|
154
|
-
|
155
|
-
drop_input_cols: Optional[bool], default=False
|
156
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
157
167
|
"""
|
158
168
|
|
159
169
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -186,7 +196,7 @@ class BaggingRegressor(BaseTransformer):
|
|
186
196
|
self.set_passthrough_cols(passthrough_cols)
|
187
197
|
self.set_drop_input_cols(drop_input_cols)
|
188
198
|
self.set_sample_weight_col(sample_weight_col)
|
189
|
-
deps = set(
|
199
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
190
200
|
deps = deps | gather_dependencies(estimator)
|
191
201
|
deps = deps | gather_dependencies(base_estimator)
|
192
202
|
self._deps = list(deps)
|
@@ -208,13 +218,14 @@ class BaggingRegressor(BaseTransformer):
|
|
208
218
|
args=init_args,
|
209
219
|
klass=sklearn.ensemble.BaggingRegressor
|
210
220
|
)
|
211
|
-
self._sklearn_object = sklearn.ensemble.BaggingRegressor(
|
221
|
+
self._sklearn_object: Any = sklearn.ensemble.BaggingRegressor(
|
212
222
|
**cleaned_up_init_args,
|
213
223
|
)
|
214
224
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
215
225
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
216
226
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
217
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
227
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
228
|
+
self._autogenerated = True
|
218
229
|
|
219
230
|
def _get_rand_id(self) -> str:
|
220
231
|
"""
|
@@ -270,54 +281,48 @@ class BaggingRegressor(BaseTransformer):
|
|
270
281
|
self
|
271
282
|
"""
|
272
283
|
self._infer_input_output_cols(dataset)
|
273
|
-
if isinstance(dataset,
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
self.
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
284
|
+
if isinstance(dataset, DataFrame):
|
285
|
+
session = dataset._session
|
286
|
+
assert session is not None # keep mypy happy
|
287
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
288
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
289
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
290
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
291
|
+
|
292
|
+
# Specify input columns so column pruning will be enforced
|
293
|
+
selected_cols = self._get_active_columns()
|
294
|
+
if len(selected_cols) > 0:
|
295
|
+
dataset = dataset.select(selected_cols)
|
296
|
+
|
297
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
298
|
+
|
299
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
300
|
+
if SNOWML_SPROC_ENV in os.environ:
|
301
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
302
|
+
project=_PROJECT,
|
303
|
+
subproject=_SUBPROJECT,
|
304
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
|
305
|
+
api_calls=[Session.call],
|
306
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
307
|
+
)
|
308
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
309
|
+
pd_df.columns = dataset.columns
|
310
|
+
dataset = pd_df
|
311
|
+
|
312
|
+
model_trainer = ModelTrainerBuilder.build(
|
313
|
+
estimator=self._sklearn_object,
|
314
|
+
dataset=dataset,
|
315
|
+
input_cols=self.input_cols,
|
316
|
+
label_cols=self.label_cols,
|
317
|
+
sample_weight_col=self.sample_weight_col,
|
318
|
+
autogenerated=self._autogenerated,
|
319
|
+
subproject=_SUBPROJECT
|
320
|
+
)
|
321
|
+
self._sklearn_object = model_trainer.train()
|
289
322
|
self._is_fitted = True
|
290
323
|
self._get_model_signatures(dataset)
|
291
324
|
return self
|
292
325
|
|
293
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
294
|
-
session = dataset._session
|
295
|
-
assert session is not None # keep mypy happy
|
296
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
297
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
298
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
299
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
300
|
-
|
301
|
-
# Specify input columns so column pruning will be enforced
|
302
|
-
selected_cols = self._get_active_columns()
|
303
|
-
if len(selected_cols) > 0:
|
304
|
-
dataset = dataset.select(selected_cols)
|
305
|
-
|
306
|
-
estimator = self._sklearn_object
|
307
|
-
assert estimator is not None # Keep mypy happy
|
308
|
-
|
309
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
310
|
-
|
311
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
312
|
-
dataset,
|
313
|
-
session,
|
314
|
-
estimator,
|
315
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
316
|
-
self.input_cols,
|
317
|
-
self.label_cols,
|
318
|
-
self.sample_weight_col,
|
319
|
-
)
|
320
|
-
|
321
326
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
322
327
|
if self._drop_input_cols:
|
323
328
|
return []
|
@@ -505,11 +510,6 @@ class BaggingRegressor(BaseTransformer):
|
|
505
510
|
subproject=_SUBPROJECT,
|
506
511
|
custom_tags=dict([("autogen", True)]),
|
507
512
|
)
|
508
|
-
@telemetry.add_stmt_params_to_df(
|
509
|
-
project=_PROJECT,
|
510
|
-
subproject=_SUBPROJECT,
|
511
|
-
custom_tags=dict([("autogen", True)]),
|
512
|
-
)
|
513
513
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
514
514
|
"""Predict regression target for X
|
515
515
|
For more details on this function, see [sklearn.ensemble.BaggingRegressor.predict]
|
@@ -563,11 +563,6 @@ class BaggingRegressor(BaseTransformer):
|
|
563
563
|
subproject=_SUBPROJECT,
|
564
564
|
custom_tags=dict([("autogen", True)]),
|
565
565
|
)
|
566
|
-
@telemetry.add_stmt_params_to_df(
|
567
|
-
project=_PROJECT,
|
568
|
-
subproject=_SUBPROJECT,
|
569
|
-
custom_tags=dict([("autogen", True)]),
|
570
|
-
)
|
571
566
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
572
567
|
"""Method not supported for this class.
|
573
568
|
|
@@ -624,7 +619,8 @@ class BaggingRegressor(BaseTransformer):
|
|
624
619
|
if False:
|
625
620
|
self.fit(dataset)
|
626
621
|
assert self._sklearn_object is not None
|
627
|
-
|
622
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
623
|
+
return labels
|
628
624
|
else:
|
629
625
|
raise NotImplementedError
|
630
626
|
|
@@ -660,6 +656,7 @@ class BaggingRegressor(BaseTransformer):
|
|
660
656
|
output_cols = []
|
661
657
|
|
662
658
|
# Make sure column names are valid snowflake identifiers.
|
659
|
+
assert output_cols is not None # Make MyPy happy
|
663
660
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
664
661
|
|
665
662
|
return rv
|
@@ -670,11 +667,6 @@ class BaggingRegressor(BaseTransformer):
|
|
670
667
|
subproject=_SUBPROJECT,
|
671
668
|
custom_tags=dict([("autogen", True)]),
|
672
669
|
)
|
673
|
-
@telemetry.add_stmt_params_to_df(
|
674
|
-
project=_PROJECT,
|
675
|
-
subproject=_SUBPROJECT,
|
676
|
-
custom_tags=dict([("autogen", True)]),
|
677
|
-
)
|
678
670
|
def predict_proba(
|
679
671
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
680
672
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -715,11 +707,6 @@ class BaggingRegressor(BaseTransformer):
|
|
715
707
|
subproject=_SUBPROJECT,
|
716
708
|
custom_tags=dict([("autogen", True)]),
|
717
709
|
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
710
|
def predict_log_proba(
|
724
711
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
725
712
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -756,16 +743,6 @@ class BaggingRegressor(BaseTransformer):
|
|
756
743
|
return output_df
|
757
744
|
|
758
745
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
759
|
-
@telemetry.send_api_usage_telemetry(
|
760
|
-
project=_PROJECT,
|
761
|
-
subproject=_SUBPROJECT,
|
762
|
-
custom_tags=dict([("autogen", True)]),
|
763
|
-
)
|
764
|
-
@telemetry.add_stmt_params_to_df(
|
765
|
-
project=_PROJECT,
|
766
|
-
subproject=_SUBPROJECT,
|
767
|
-
custom_tags=dict([("autogen", True)]),
|
768
|
-
)
|
769
746
|
def decision_function(
|
770
747
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
771
748
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -866,11 +843,6 @@ class BaggingRegressor(BaseTransformer):
|
|
866
843
|
subproject=_SUBPROJECT,
|
867
844
|
custom_tags=dict([("autogen", True)]),
|
868
845
|
)
|
869
|
-
@telemetry.add_stmt_params_to_df(
|
870
|
-
project=_PROJECT,
|
871
|
-
subproject=_SUBPROJECT,
|
872
|
-
custom_tags=dict([("autogen", True)]),
|
873
|
-
)
|
874
846
|
def kneighbors(
|
875
847
|
self,
|
876
848
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -930,9 +902,9 @@ class BaggingRegressor(BaseTransformer):
|
|
930
902
|
# For classifier, the type of predict is the same as the type of label
|
931
903
|
if self._sklearn_object._estimator_type == 'classifier':
|
932
904
|
# label columns is the desired type for output
|
933
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
905
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
934
906
|
# rename the output columns
|
935
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
907
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
936
908
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
937
909
|
([] if self._drop_input_cols else inputs)
|
938
910
|
+ outputs)
|