snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KNNImputer(BaseTransformer):
|
57
58
|
r"""Imputation for completing missing values using k-Nearest Neighbors
|
58
59
|
For more details on this class, see [sklearn.impute.KNNImputer]
|
@@ -60,6 +61,49 @@ class KNNImputer(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
missing_values: int, float, str, np.nan or None, default=np.nan
|
64
108
|
The placeholder for the missing values. All occurrences of
|
65
109
|
`missing_values` will be imputed. For pandas' dataframes with
|
@@ -106,42 +150,6 @@ class KNNImputer(BaseTransformer):
|
|
106
150
|
If True, features that consist exclusively of missing values when
|
107
151
|
`fit` is called are returned in results when `transform` is called.
|
108
152
|
The imputed value is always `0`.
|
109
|
-
|
110
|
-
input_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain features.
|
112
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
113
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
114
|
-
parameters are considered input columns.
|
115
|
-
|
116
|
-
label_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that contain labels.
|
118
|
-
This is a required param for estimators, as there is no way to infer these
|
119
|
-
columns. If this parameter is not specified, then object is fitted without
|
120
|
-
labels (like a transformer).
|
121
|
-
|
122
|
-
output_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that will store the
|
124
|
-
output of predict and transform operations. The length of output_cols must
|
125
|
-
match the expected number of output columns from the specific estimator or
|
126
|
-
transformer class used.
|
127
|
-
If this parameter is not specified, output column names are derived by
|
128
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
129
|
-
column names work for estimator's predict() method, but output_cols must
|
130
|
-
be set explicitly for transformers.
|
131
|
-
|
132
|
-
sample_weight_col: Optional[str]
|
133
|
-
A string representing the column name containing the sample weights.
|
134
|
-
This argument is only required when working with weighted datasets.
|
135
|
-
|
136
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or a list of strings indicating column names to be excluded from any
|
138
|
-
operations (such as train, transform, or inference). These specified column(s)
|
139
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
140
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
141
|
-
columns, like index columns, during training or inference.
|
142
|
-
|
143
|
-
drop_input_cols: Optional[bool], default=False
|
144
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
145
153
|
"""
|
146
154
|
|
147
155
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -169,7 +177,7 @@ class KNNImputer(BaseTransformer):
|
|
169
177
|
self.set_passthrough_cols(passthrough_cols)
|
170
178
|
self.set_drop_input_cols(drop_input_cols)
|
171
179
|
self.set_sample_weight_col(sample_weight_col)
|
172
|
-
deps = set(
|
180
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
173
181
|
|
174
182
|
self._deps = list(deps)
|
175
183
|
|
@@ -184,13 +192,14 @@ class KNNImputer(BaseTransformer):
|
|
184
192
|
args=init_args,
|
185
193
|
klass=sklearn.impute.KNNImputer
|
186
194
|
)
|
187
|
-
self._sklearn_object = sklearn.impute.KNNImputer(
|
195
|
+
self._sklearn_object: Any = sklearn.impute.KNNImputer(
|
188
196
|
**cleaned_up_init_args,
|
189
197
|
)
|
190
198
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
191
199
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
192
200
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
193
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
201
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNNImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
202
|
+
self._autogenerated = True
|
194
203
|
|
195
204
|
def _get_rand_id(self) -> str:
|
196
205
|
"""
|
@@ -246,54 +255,48 @@ class KNNImputer(BaseTransformer):
|
|
246
255
|
self
|
247
256
|
"""
|
248
257
|
self._infer_input_output_cols(dataset)
|
249
|
-
if isinstance(dataset,
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
self.
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
258
|
+
if isinstance(dataset, DataFrame):
|
259
|
+
session = dataset._session
|
260
|
+
assert session is not None # keep mypy happy
|
261
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
262
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
263
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
264
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
265
|
+
|
266
|
+
# Specify input columns so column pruning will be enforced
|
267
|
+
selected_cols = self._get_active_columns()
|
268
|
+
if len(selected_cols) > 0:
|
269
|
+
dataset = dataset.select(selected_cols)
|
270
|
+
|
271
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
272
|
+
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
274
|
+
if SNOWML_SPROC_ENV in os.environ:
|
275
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
276
|
+
project=_PROJECT,
|
277
|
+
subproject=_SUBPROJECT,
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNNImputer.__class__.__name__),
|
279
|
+
api_calls=[Session.call],
|
280
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
281
|
+
)
|
282
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
283
|
+
pd_df.columns = dataset.columns
|
284
|
+
dataset = pd_df
|
285
|
+
|
286
|
+
model_trainer = ModelTrainerBuilder.build(
|
287
|
+
estimator=self._sklearn_object,
|
288
|
+
dataset=dataset,
|
289
|
+
input_cols=self.input_cols,
|
290
|
+
label_cols=self.label_cols,
|
291
|
+
sample_weight_col=self.sample_weight_col,
|
292
|
+
autogenerated=self._autogenerated,
|
293
|
+
subproject=_SUBPROJECT
|
294
|
+
)
|
295
|
+
self._sklearn_object = model_trainer.train()
|
265
296
|
self._is_fitted = True
|
266
297
|
self._get_model_signatures(dataset)
|
267
298
|
return self
|
268
299
|
|
269
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
270
|
-
session = dataset._session
|
271
|
-
assert session is not None # keep mypy happy
|
272
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
273
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
274
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
275
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
276
|
-
|
277
|
-
# Specify input columns so column pruning will be enforced
|
278
|
-
selected_cols = self._get_active_columns()
|
279
|
-
if len(selected_cols) > 0:
|
280
|
-
dataset = dataset.select(selected_cols)
|
281
|
-
|
282
|
-
estimator = self._sklearn_object
|
283
|
-
assert estimator is not None # Keep mypy happy
|
284
|
-
|
285
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
286
|
-
|
287
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
288
|
-
dataset,
|
289
|
-
session,
|
290
|
-
estimator,
|
291
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
292
|
-
self.input_cols,
|
293
|
-
self.label_cols,
|
294
|
-
self.sample_weight_col,
|
295
|
-
)
|
296
|
-
|
297
300
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
298
301
|
if self._drop_input_cols:
|
299
302
|
return []
|
@@ -481,11 +484,6 @@ class KNNImputer(BaseTransformer):
|
|
481
484
|
subproject=_SUBPROJECT,
|
482
485
|
custom_tags=dict([("autogen", True)]),
|
483
486
|
)
|
484
|
-
@telemetry.add_stmt_params_to_df(
|
485
|
-
project=_PROJECT,
|
486
|
-
subproject=_SUBPROJECT,
|
487
|
-
custom_tags=dict([("autogen", True)]),
|
488
|
-
)
|
489
487
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
490
488
|
"""Method not supported for this class.
|
491
489
|
|
@@ -537,11 +535,6 @@ class KNNImputer(BaseTransformer):
|
|
537
535
|
subproject=_SUBPROJECT,
|
538
536
|
custom_tags=dict([("autogen", True)]),
|
539
537
|
)
|
540
|
-
@telemetry.add_stmt_params_to_df(
|
541
|
-
project=_PROJECT,
|
542
|
-
subproject=_SUBPROJECT,
|
543
|
-
custom_tags=dict([("autogen", True)]),
|
544
|
-
)
|
545
538
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
546
539
|
"""Impute all missing values in X
|
547
540
|
For more details on this function, see [sklearn.impute.KNNImputer.transform]
|
@@ -600,7 +593,8 @@ class KNNImputer(BaseTransformer):
|
|
600
593
|
if False:
|
601
594
|
self.fit(dataset)
|
602
595
|
assert self._sklearn_object is not None
|
603
|
-
|
596
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
597
|
+
return labels
|
604
598
|
else:
|
605
599
|
raise NotImplementedError
|
606
600
|
|
@@ -636,6 +630,7 @@ class KNNImputer(BaseTransformer):
|
|
636
630
|
output_cols = []
|
637
631
|
|
638
632
|
# Make sure column names are valid snowflake identifiers.
|
633
|
+
assert output_cols is not None # Make MyPy happy
|
639
634
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
640
635
|
|
641
636
|
return rv
|
@@ -646,11 +641,6 @@ class KNNImputer(BaseTransformer):
|
|
646
641
|
subproject=_SUBPROJECT,
|
647
642
|
custom_tags=dict([("autogen", True)]),
|
648
643
|
)
|
649
|
-
@telemetry.add_stmt_params_to_df(
|
650
|
-
project=_PROJECT,
|
651
|
-
subproject=_SUBPROJECT,
|
652
|
-
custom_tags=dict([("autogen", True)]),
|
653
|
-
)
|
654
644
|
def predict_proba(
|
655
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
656
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -691,11 +681,6 @@ class KNNImputer(BaseTransformer):
|
|
691
681
|
subproject=_SUBPROJECT,
|
692
682
|
custom_tags=dict([("autogen", True)]),
|
693
683
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
684
|
def predict_log_proba(
|
700
685
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
701
686
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,16 +717,6 @@ class KNNImputer(BaseTransformer):
|
|
732
717
|
return output_df
|
733
718
|
|
734
719
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
735
|
-
@telemetry.send_api_usage_telemetry(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
|
-
@telemetry.add_stmt_params_to_df(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
720
|
def decision_function(
|
746
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
747
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -840,11 +815,6 @@ class KNNImputer(BaseTransformer):
|
|
840
815
|
subproject=_SUBPROJECT,
|
841
816
|
custom_tags=dict([("autogen", True)]),
|
842
817
|
)
|
843
|
-
@telemetry.add_stmt_params_to_df(
|
844
|
-
project=_PROJECT,
|
845
|
-
subproject=_SUBPROJECT,
|
846
|
-
custom_tags=dict([("autogen", True)]),
|
847
|
-
)
|
848
818
|
def kneighbors(
|
849
819
|
self,
|
850
820
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -904,9 +874,9 @@ class KNNImputer(BaseTransformer):
|
|
904
874
|
# For classifier, the type of predict is the same as the type of label
|
905
875
|
if self._sklearn_object._estimator_type == 'classifier':
|
906
876
|
# label columns is the desired type for output
|
907
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
877
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
908
878
|
# rename the output columns
|
909
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
879
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
910
880
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
911
881
|
([] if self._drop_input_cols else inputs)
|
912
882
|
+ outputs)
|