snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LabelPropagation(BaseTransformer):
57
58
  r"""Label Propagation classifier
58
59
  For more details on this class, see [sklearn.semi_supervised.LabelPropagation]
@@ -60,66 +61,75 @@ class LabelPropagation(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- kernel: {'knn', 'rbf'} or callable, default='rbf'
64
- String identifier for kernel function to use or the kernel function
65
- itself. Only 'rbf' and 'knn' strings are valid inputs. The function
66
- passed should take two inputs, each of shape (n_samples, n_features),
67
- and return a (n_samples, n_samples) shaped weight matrix.
68
-
69
- gamma: float, default=20
70
- Parameter for rbf kernel.
71
-
72
- n_neighbors: int, default=7
73
- Parameter for knn kernel which need to be strictly positive.
74
-
75
- max_iter: int, default=1000
76
- Change maximum number of iterations allowed.
77
-
78
- tol: float, 1e-3
79
- Convergence tolerance: threshold to consider the system at steady
80
- state.
81
-
82
- n_jobs: int, default=None
83
- The number of parallel jobs to run.
84
- ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
85
- ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
86
- for more details.
87
64
 
88
65
  input_cols: Optional[Union[str, List[str]]]
89
66
  A string or list of strings representing column names that contain features.
90
67
  If this parameter is not specified, all columns in the input DataFrame except
91
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
92
- parameters are considered input columns.
93
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
94
72
  label_cols: Optional[Union[str, List[str]]]
95
73
  A string or list of strings representing column names that contain labels.
96
- This is a required param for estimators, as there is no way to infer these
97
- columns. If this parameter is not specified, then object is fitted without
98
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
99
76
 
100
77
  output_cols: Optional[Union[str, List[str]]]
101
78
  A string or list of strings representing column names that will store the
102
79
  output of predict and transform operations. The length of output_cols must
103
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
104
81
  transformer class used.
105
- If this parameter is not specified, output column names are derived by
106
- adding an OUTPUT_ prefix to the label column names. These inferred output
107
- column names work for estimator's predict() method, but output_cols must
108
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
109
91
 
110
92
  sample_weight_col: Optional[str]
111
93
  A string representing the column name containing the sample weights.
112
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
113
97
 
114
98
  passthrough_cols: Optional[Union[str, List[str]]]
115
99
  A string or a list of strings indicating column names to be excluded from any
116
100
  operations (such as train, transform, or inference). These specified column(s)
117
101
  will remain untouched throughout the process. This option is helpful in scenarios
118
102
  requiring automatic input_cols inference, but need to avoid using specific
119
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
120
105
 
121
106
  drop_input_cols: Optional[bool], default=False
122
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ kernel: {'knn', 'rbf'} or callable, default='rbf'
110
+ String identifier for kernel function to use or the kernel function
111
+ itself. Only 'rbf' and 'knn' strings are valid inputs. The function
112
+ passed should take two inputs, each of shape (n_samples, n_features),
113
+ and return a (n_samples, n_samples) shaped weight matrix.
114
+
115
+ gamma: float, default=20
116
+ Parameter for rbf kernel.
117
+
118
+ n_neighbors: int, default=7
119
+ Parameter for knn kernel which need to be strictly positive.
120
+
121
+ max_iter: int, default=1000
122
+ Change maximum number of iterations allowed.
123
+
124
+ tol: float, 1e-3
125
+ Convergence tolerance: threshold to consider the system at steady
126
+ state.
127
+
128
+ n_jobs: int, default=None
129
+ The number of parallel jobs to run.
130
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
131
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
132
+ for more details.
123
133
  """
124
134
 
125
135
  def __init__( # type: ignore[no-untyped-def]
@@ -146,7 +156,7 @@ class LabelPropagation(BaseTransformer):
146
156
  self.set_passthrough_cols(passthrough_cols)
147
157
  self.set_drop_input_cols(drop_input_cols)
148
158
  self.set_sample_weight_col(sample_weight_col)
149
- deps = set(SklearnWrapperProvider().dependencies)
159
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
150
160
 
151
161
  self._deps = list(deps)
152
162
 
@@ -160,13 +170,14 @@ class LabelPropagation(BaseTransformer):
160
170
  args=init_args,
161
171
  klass=sklearn.semi_supervised.LabelPropagation
162
172
  )
163
- self._sklearn_object = sklearn.semi_supervised.LabelPropagation(
173
+ self._sklearn_object: Any = sklearn.semi_supervised.LabelPropagation(
164
174
  **cleaned_up_init_args,
165
175
  )
166
176
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
167
177
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
168
178
  self._snowpark_cols: Optional[List[str]] = self.input_cols
169
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
179
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
180
+ self._autogenerated = True
170
181
 
171
182
  def _get_rand_id(self) -> str:
172
183
  """
@@ -222,54 +233,48 @@ class LabelPropagation(BaseTransformer):
222
233
  self
223
234
  """
224
235
  self._infer_input_output_cols(dataset)
225
- if isinstance(dataset, pd.DataFrame):
226
- assert self._sklearn_object is not None # keep mypy happy
227
- self._sklearn_object = self._handlers.fit_pandas(
228
- dataset,
229
- self._sklearn_object,
230
- self.input_cols,
231
- self.label_cols,
232
- self.sample_weight_col
233
- )
234
- elif isinstance(dataset, DataFrame):
235
- self._fit_snowpark(dataset)
236
- else:
237
- raise TypeError(
238
- f"Unexpected dataset type: {type(dataset)}."
239
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
240
- )
236
+ if isinstance(dataset, DataFrame):
237
+ session = dataset._session
238
+ assert session is not None # keep mypy happy
239
+ # Validate that key package version in user workspace are supported in snowflake conda channel
240
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
241
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
242
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
243
+
244
+ # Specify input columns so column pruning will be enforced
245
+ selected_cols = self._get_active_columns()
246
+ if len(selected_cols) > 0:
247
+ dataset = dataset.select(selected_cols)
248
+
249
+ self._snowpark_cols = dataset.select(self.input_cols).columns
250
+
251
+ # If we are already in a stored procedure, no need to kick off another one.
252
+ if SNOWML_SPROC_ENV in os.environ:
253
+ statement_params = telemetry.get_function_usage_statement_params(
254
+ project=_PROJECT,
255
+ subproject=_SUBPROJECT,
256
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelPropagation.__class__.__name__),
257
+ api_calls=[Session.call],
258
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
259
+ )
260
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
261
+ pd_df.columns = dataset.columns
262
+ dataset = pd_df
263
+
264
+ model_trainer = ModelTrainerBuilder.build(
265
+ estimator=self._sklearn_object,
266
+ dataset=dataset,
267
+ input_cols=self.input_cols,
268
+ label_cols=self.label_cols,
269
+ sample_weight_col=self.sample_weight_col,
270
+ autogenerated=self._autogenerated,
271
+ subproject=_SUBPROJECT
272
+ )
273
+ self._sklearn_object = model_trainer.train()
241
274
  self._is_fitted = True
242
275
  self._get_model_signatures(dataset)
243
276
  return self
244
277
 
245
- def _fit_snowpark(self, dataset: DataFrame) -> None:
246
- session = dataset._session
247
- assert session is not None # keep mypy happy
248
- # Validate that key package version in user workspace are supported in snowflake conda channel
249
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
250
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
251
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
252
-
253
- # Specify input columns so column pruning will be enforced
254
- selected_cols = self._get_active_columns()
255
- if len(selected_cols) > 0:
256
- dataset = dataset.select(selected_cols)
257
-
258
- estimator = self._sklearn_object
259
- assert estimator is not None # Keep mypy happy
260
-
261
- self._snowpark_cols = dataset.select(self.input_cols).columns
262
-
263
- self._sklearn_object = self._handlers.fit_snowpark(
264
- dataset,
265
- session,
266
- estimator,
267
- ["snowflake-snowpark-python"] + self._get_dependencies(),
268
- self.input_cols,
269
- self.label_cols,
270
- self.sample_weight_col,
271
- )
272
-
273
278
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
274
279
  if self._drop_input_cols:
275
280
  return []
@@ -457,11 +462,6 @@ class LabelPropagation(BaseTransformer):
457
462
  subproject=_SUBPROJECT,
458
463
  custom_tags=dict([("autogen", True)]),
459
464
  )
460
- @telemetry.add_stmt_params_to_df(
461
- project=_PROJECT,
462
- subproject=_SUBPROJECT,
463
- custom_tags=dict([("autogen", True)]),
464
- )
465
465
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
466
466
  """Perform inductive inference across the model
467
467
  For more details on this function, see [sklearn.semi_supervised.LabelPropagation.predict]
@@ -515,11 +515,6 @@ class LabelPropagation(BaseTransformer):
515
515
  subproject=_SUBPROJECT,
516
516
  custom_tags=dict([("autogen", True)]),
517
517
  )
518
- @telemetry.add_stmt_params_to_df(
519
- project=_PROJECT,
520
- subproject=_SUBPROJECT,
521
- custom_tags=dict([("autogen", True)]),
522
- )
523
518
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
524
519
  """Method not supported for this class.
525
520
 
@@ -576,7 +571,8 @@ class LabelPropagation(BaseTransformer):
576
571
  if False:
577
572
  self.fit(dataset)
578
573
  assert self._sklearn_object is not None
579
- return self._sklearn_object.labels_
574
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
575
+ return labels
580
576
  else:
581
577
  raise NotImplementedError
582
578
 
@@ -612,6 +608,7 @@ class LabelPropagation(BaseTransformer):
612
608
  output_cols = []
613
609
 
614
610
  # Make sure column names are valid snowflake identifiers.
611
+ assert output_cols is not None # Make MyPy happy
615
612
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
616
613
 
617
614
  return rv
@@ -622,11 +619,6 @@ class LabelPropagation(BaseTransformer):
622
619
  subproject=_SUBPROJECT,
623
620
  custom_tags=dict([("autogen", True)]),
624
621
  )
625
- @telemetry.add_stmt_params_to_df(
626
- project=_PROJECT,
627
- subproject=_SUBPROJECT,
628
- custom_tags=dict([("autogen", True)]),
629
- )
630
622
  def predict_proba(
631
623
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
632
624
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -669,11 +661,6 @@ class LabelPropagation(BaseTransformer):
669
661
  subproject=_SUBPROJECT,
670
662
  custom_tags=dict([("autogen", True)]),
671
663
  )
672
- @telemetry.add_stmt_params_to_df(
673
- project=_PROJECT,
674
- subproject=_SUBPROJECT,
675
- custom_tags=dict([("autogen", True)]),
676
- )
677
664
  def predict_log_proba(
678
665
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
679
666
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -712,16 +699,6 @@ class LabelPropagation(BaseTransformer):
712
699
  return output_df
713
700
 
714
701
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
715
- @telemetry.send_api_usage_telemetry(
716
- project=_PROJECT,
717
- subproject=_SUBPROJECT,
718
- custom_tags=dict([("autogen", True)]),
719
- )
720
- @telemetry.add_stmt_params_to_df(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
702
  def decision_function(
726
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
727
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,11 +799,6 @@ class LabelPropagation(BaseTransformer):
822
799
  subproject=_SUBPROJECT,
823
800
  custom_tags=dict([("autogen", True)]),
824
801
  )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
802
  def kneighbors(
831
803
  self,
832
804
  dataset: Union[DataFrame, pd.DataFrame],
@@ -886,9 +858,9 @@ class LabelPropagation(BaseTransformer):
886
858
  # For classifier, the type of predict is the same as the type of label
887
859
  if self._sklearn_object._estimator_type == 'classifier':
888
860
  # label columns is the desired type for output
889
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
861
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
890
862
  # rename the output columns
891
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
863
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
892
864
  self._model_signature_dict["predict"] = ModelSignature(inputs,
893
865
  ([] if self._drop_input_cols else inputs)
894
866
  + outputs)