snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MiniBatchKMeans(BaseTransformer):
57
58
  r"""Mini-Batch K-Means clustering
58
59
  For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
@@ -61,6 +62,48 @@ class MiniBatchKMeans(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
64
107
  n_clusters: int, default=8
65
108
  The number of clusters to form as well as the number of
66
109
  centroids to generate.
@@ -150,42 +193,6 @@ class MiniBatchKMeans(BaseTransformer):
150
193
  converge, but should converge in a better clustering. However, too high
151
194
  a value may cause convergence issues, especially with a small batch
152
195
  size.
153
-
154
- input_cols: Optional[Union[str, List[str]]]
155
- A string or list of strings representing column names that contain features.
156
- If this parameter is not specified, all columns in the input DataFrame except
157
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
158
- parameters are considered input columns.
159
-
160
- label_cols: Optional[Union[str, List[str]]]
161
- A string or list of strings representing column names that contain labels.
162
- This is a required param for estimators, as there is no way to infer these
163
- columns. If this parameter is not specified, then object is fitted without
164
- labels (like a transformer).
165
-
166
- output_cols: Optional[Union[str, List[str]]]
167
- A string or list of strings representing column names that will store the
168
- output of predict and transform operations. The length of output_cols must
169
- match the expected number of output columns from the specific estimator or
170
- transformer class used.
171
- If this parameter is not specified, output column names are derived by
172
- adding an OUTPUT_ prefix to the label column names. These inferred output
173
- column names work for estimator's predict() method, but output_cols must
174
- be set explicitly for transformers.
175
-
176
- sample_weight_col: Optional[str]
177
- A string representing the column name containing the sample weights.
178
- This argument is only required when working with weighted datasets.
179
-
180
- passthrough_cols: Optional[Union[str, List[str]]]
181
- A string or a list of strings indicating column names to be excluded from any
182
- operations (such as train, transform, or inference). These specified column(s)
183
- will remain untouched throughout the process. This option is helpful in scenarios
184
- requiring automatic input_cols inference, but need to avoid using specific
185
- columns, like index columns, during training or inference.
186
-
187
- drop_input_cols: Optional[bool], default=False
188
- If set, the response of predict(), transform() methods will not contain input columns.
189
196
  """
190
197
 
191
198
  def __init__( # type: ignore[no-untyped-def]
@@ -218,7 +225,7 @@ class MiniBatchKMeans(BaseTransformer):
218
225
  self.set_passthrough_cols(passthrough_cols)
219
226
  self.set_drop_input_cols(drop_input_cols)
220
227
  self.set_sample_weight_col(sample_weight_col)
221
- deps = set(SklearnWrapperProvider().dependencies)
228
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
222
229
 
223
230
  self._deps = list(deps)
224
231
 
@@ -238,13 +245,14 @@ class MiniBatchKMeans(BaseTransformer):
238
245
  args=init_args,
239
246
  klass=sklearn.cluster.MiniBatchKMeans
240
247
  )
241
- self._sklearn_object = sklearn.cluster.MiniBatchKMeans(
248
+ self._sklearn_object: Any = sklearn.cluster.MiniBatchKMeans(
242
249
  **cleaned_up_init_args,
243
250
  )
244
251
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
245
252
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
246
253
  self._snowpark_cols: Optional[List[str]] = self.input_cols
247
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
254
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
255
+ self._autogenerated = True
248
256
 
249
257
  def _get_rand_id(self) -> str:
250
258
  """
@@ -300,54 +308,48 @@ class MiniBatchKMeans(BaseTransformer):
300
308
  self
301
309
  """
302
310
  self._infer_input_output_cols(dataset)
303
- if isinstance(dataset, pd.DataFrame):
304
- assert self._sklearn_object is not None # keep mypy happy
305
- self._sklearn_object = self._handlers.fit_pandas(
306
- dataset,
307
- self._sklearn_object,
308
- self.input_cols,
309
- self.label_cols,
310
- self.sample_weight_col
311
- )
312
- elif isinstance(dataset, DataFrame):
313
- self._fit_snowpark(dataset)
314
- else:
315
- raise TypeError(
316
- f"Unexpected dataset type: {type(dataset)}."
317
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
318
- )
311
+ if isinstance(dataset, DataFrame):
312
+ session = dataset._session
313
+ assert session is not None # keep mypy happy
314
+ # Validate that key package version in user workspace are supported in snowflake conda channel
315
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
316
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
317
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
318
+
319
+ # Specify input columns so column pruning will be enforced
320
+ selected_cols = self._get_active_columns()
321
+ if len(selected_cols) > 0:
322
+ dataset = dataset.select(selected_cols)
323
+
324
+ self._snowpark_cols = dataset.select(self.input_cols).columns
325
+
326
+ # If we are already in a stored procedure, no need to kick off another one.
327
+ if SNOWML_SPROC_ENV in os.environ:
328
+ statement_params = telemetry.get_function_usage_statement_params(
329
+ project=_PROJECT,
330
+ subproject=_SUBPROJECT,
331
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchKMeans.__class__.__name__),
332
+ api_calls=[Session.call],
333
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
334
+ )
335
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
336
+ pd_df.columns = dataset.columns
337
+ dataset = pd_df
338
+
339
+ model_trainer = ModelTrainerBuilder.build(
340
+ estimator=self._sklearn_object,
341
+ dataset=dataset,
342
+ input_cols=self.input_cols,
343
+ label_cols=self.label_cols,
344
+ sample_weight_col=self.sample_weight_col,
345
+ autogenerated=self._autogenerated,
346
+ subproject=_SUBPROJECT
347
+ )
348
+ self._sklearn_object = model_trainer.train()
319
349
  self._is_fitted = True
320
350
  self._get_model_signatures(dataset)
321
351
  return self
322
352
 
323
- def _fit_snowpark(self, dataset: DataFrame) -> None:
324
- session = dataset._session
325
- assert session is not None # keep mypy happy
326
- # Validate that key package version in user workspace are supported in snowflake conda channel
327
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
328
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
329
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
330
-
331
- # Specify input columns so column pruning will be enforced
332
- selected_cols = self._get_active_columns()
333
- if len(selected_cols) > 0:
334
- dataset = dataset.select(selected_cols)
335
-
336
- estimator = self._sklearn_object
337
- assert estimator is not None # Keep mypy happy
338
-
339
- self._snowpark_cols = dataset.select(self.input_cols).columns
340
-
341
- self._sklearn_object = self._handlers.fit_snowpark(
342
- dataset,
343
- session,
344
- estimator,
345
- ["snowflake-snowpark-python"] + self._get_dependencies(),
346
- self.input_cols,
347
- self.label_cols,
348
- self.sample_weight_col,
349
- )
350
-
351
353
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
352
354
  if self._drop_input_cols:
353
355
  return []
@@ -535,11 +537,6 @@ class MiniBatchKMeans(BaseTransformer):
535
537
  subproject=_SUBPROJECT,
536
538
  custom_tags=dict([("autogen", True)]),
537
539
  )
538
- @telemetry.add_stmt_params_to_df(
539
- project=_PROJECT,
540
- subproject=_SUBPROJECT,
541
- custom_tags=dict([("autogen", True)]),
542
- )
543
540
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
544
541
  """Predict the closest cluster each sample in X belongs to
545
542
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.predict]
@@ -593,11 +590,6 @@ class MiniBatchKMeans(BaseTransformer):
593
590
  subproject=_SUBPROJECT,
594
591
  custom_tags=dict([("autogen", True)]),
595
592
  )
596
- @telemetry.add_stmt_params_to_df(
597
- project=_PROJECT,
598
- subproject=_SUBPROJECT,
599
- custom_tags=dict([("autogen", True)]),
600
- )
601
593
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
602
594
  """Transform X to a cluster-distance space
603
595
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.transform]
@@ -658,7 +650,8 @@ class MiniBatchKMeans(BaseTransformer):
658
650
  if True:
659
651
  self.fit(dataset)
660
652
  assert self._sklearn_object is not None
661
- return self._sklearn_object.labels_
653
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
654
+ return labels
662
655
  else:
663
656
  raise NotImplementedError
664
657
 
@@ -694,6 +687,7 @@ class MiniBatchKMeans(BaseTransformer):
694
687
  output_cols = []
695
688
 
696
689
  # Make sure column names are valid snowflake identifiers.
690
+ assert output_cols is not None # Make MyPy happy
697
691
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
698
692
 
699
693
  return rv
@@ -704,11 +698,6 @@ class MiniBatchKMeans(BaseTransformer):
704
698
  subproject=_SUBPROJECT,
705
699
  custom_tags=dict([("autogen", True)]),
706
700
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
701
  def predict_proba(
713
702
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
714
703
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -749,11 +738,6 @@ class MiniBatchKMeans(BaseTransformer):
749
738
  subproject=_SUBPROJECT,
750
739
  custom_tags=dict([("autogen", True)]),
751
740
  )
752
- @telemetry.add_stmt_params_to_df(
753
- project=_PROJECT,
754
- subproject=_SUBPROJECT,
755
- custom_tags=dict([("autogen", True)]),
756
- )
757
741
  def predict_log_proba(
758
742
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
759
743
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -790,16 +774,6 @@ class MiniBatchKMeans(BaseTransformer):
790
774
  return output_df
791
775
 
792
776
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
793
- @telemetry.send_api_usage_telemetry(
794
- project=_PROJECT,
795
- subproject=_SUBPROJECT,
796
- custom_tags=dict([("autogen", True)]),
797
- )
798
- @telemetry.add_stmt_params_to_df(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
777
  def decision_function(
804
778
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
805
779
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -900,11 +874,6 @@ class MiniBatchKMeans(BaseTransformer):
900
874
  subproject=_SUBPROJECT,
901
875
  custom_tags=dict([("autogen", True)]),
902
876
  )
903
- @telemetry.add_stmt_params_to_df(
904
- project=_PROJECT,
905
- subproject=_SUBPROJECT,
906
- custom_tags=dict([("autogen", True)]),
907
- )
908
877
  def kneighbors(
909
878
  self,
910
879
  dataset: Union[DataFrame, pd.DataFrame],
@@ -964,9 +933,9 @@ class MiniBatchKMeans(BaseTransformer):
964
933
  # For classifier, the type of predict is the same as the type of label
965
934
  if self._sklearn_object._estimator_type == 'classifier':
966
935
  # label columns is the desired type for output
967
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
936
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
968
937
  # rename the output columns
969
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
938
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
970
939
  self._model_signature_dict["predict"] = ModelSignature(inputs,
971
940
  ([] if self._drop_input_cols else inputs)
972
941
  + outputs)