snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MiniBatchKMeans(BaseTransformer):
|
57
58
|
r"""Mini-Batch K-Means clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
|
@@ -61,6 +62,48 @@ class MiniBatchKMeans(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
64
107
|
n_clusters: int, default=8
|
65
108
|
The number of clusters to form as well as the number of
|
66
109
|
centroids to generate.
|
@@ -150,42 +193,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
150
193
|
converge, but should converge in a better clustering. However, too high
|
151
194
|
a value may cause convergence issues, especially with a small batch
|
152
195
|
size.
|
153
|
-
|
154
|
-
input_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or list of strings representing column names that contain features.
|
156
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
157
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
158
|
-
parameters are considered input columns.
|
159
|
-
|
160
|
-
label_cols: Optional[Union[str, List[str]]]
|
161
|
-
A string or list of strings representing column names that contain labels.
|
162
|
-
This is a required param for estimators, as there is no way to infer these
|
163
|
-
columns. If this parameter is not specified, then object is fitted without
|
164
|
-
labels (like a transformer).
|
165
|
-
|
166
|
-
output_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that will store the
|
168
|
-
output of predict and transform operations. The length of output_cols must
|
169
|
-
match the expected number of output columns from the specific estimator or
|
170
|
-
transformer class used.
|
171
|
-
If this parameter is not specified, output column names are derived by
|
172
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
173
|
-
column names work for estimator's predict() method, but output_cols must
|
174
|
-
be set explicitly for transformers.
|
175
|
-
|
176
|
-
sample_weight_col: Optional[str]
|
177
|
-
A string representing the column name containing the sample weights.
|
178
|
-
This argument is only required when working with weighted datasets.
|
179
|
-
|
180
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
181
|
-
A string or a list of strings indicating column names to be excluded from any
|
182
|
-
operations (such as train, transform, or inference). These specified column(s)
|
183
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
184
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
185
|
-
columns, like index columns, during training or inference.
|
186
|
-
|
187
|
-
drop_input_cols: Optional[bool], default=False
|
188
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
189
196
|
"""
|
190
197
|
|
191
198
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -218,7 +225,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
218
225
|
self.set_passthrough_cols(passthrough_cols)
|
219
226
|
self.set_drop_input_cols(drop_input_cols)
|
220
227
|
self.set_sample_weight_col(sample_weight_col)
|
221
|
-
deps = set(
|
228
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
222
229
|
|
223
230
|
self._deps = list(deps)
|
224
231
|
|
@@ -238,13 +245,14 @@ class MiniBatchKMeans(BaseTransformer):
|
|
238
245
|
args=init_args,
|
239
246
|
klass=sklearn.cluster.MiniBatchKMeans
|
240
247
|
)
|
241
|
-
self._sklearn_object = sklearn.cluster.MiniBatchKMeans(
|
248
|
+
self._sklearn_object: Any = sklearn.cluster.MiniBatchKMeans(
|
242
249
|
**cleaned_up_init_args,
|
243
250
|
)
|
244
251
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
245
252
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
246
253
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
247
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
254
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
255
|
+
self._autogenerated = True
|
248
256
|
|
249
257
|
def _get_rand_id(self) -> str:
|
250
258
|
"""
|
@@ -300,54 +308,48 @@ class MiniBatchKMeans(BaseTransformer):
|
|
300
308
|
self
|
301
309
|
"""
|
302
310
|
self._infer_input_output_cols(dataset)
|
303
|
-
if isinstance(dataset,
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
self.
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
311
|
+
if isinstance(dataset, DataFrame):
|
312
|
+
session = dataset._session
|
313
|
+
assert session is not None # keep mypy happy
|
314
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
315
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
316
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
317
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
318
|
+
|
319
|
+
# Specify input columns so column pruning will be enforced
|
320
|
+
selected_cols = self._get_active_columns()
|
321
|
+
if len(selected_cols) > 0:
|
322
|
+
dataset = dataset.select(selected_cols)
|
323
|
+
|
324
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
|
+
|
326
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
327
|
+
if SNOWML_SPROC_ENV in os.environ:
|
328
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
329
|
+
project=_PROJECT,
|
330
|
+
subproject=_SUBPROJECT,
|
331
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchKMeans.__class__.__name__),
|
332
|
+
api_calls=[Session.call],
|
333
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
334
|
+
)
|
335
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
336
|
+
pd_df.columns = dataset.columns
|
337
|
+
dataset = pd_df
|
338
|
+
|
339
|
+
model_trainer = ModelTrainerBuilder.build(
|
340
|
+
estimator=self._sklearn_object,
|
341
|
+
dataset=dataset,
|
342
|
+
input_cols=self.input_cols,
|
343
|
+
label_cols=self.label_cols,
|
344
|
+
sample_weight_col=self.sample_weight_col,
|
345
|
+
autogenerated=self._autogenerated,
|
346
|
+
subproject=_SUBPROJECT
|
347
|
+
)
|
348
|
+
self._sklearn_object = model_trainer.train()
|
319
349
|
self._is_fitted = True
|
320
350
|
self._get_model_signatures(dataset)
|
321
351
|
return self
|
322
352
|
|
323
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
324
|
-
session = dataset._session
|
325
|
-
assert session is not None # keep mypy happy
|
326
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
327
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
328
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
329
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
330
|
-
|
331
|
-
# Specify input columns so column pruning will be enforced
|
332
|
-
selected_cols = self._get_active_columns()
|
333
|
-
if len(selected_cols) > 0:
|
334
|
-
dataset = dataset.select(selected_cols)
|
335
|
-
|
336
|
-
estimator = self._sklearn_object
|
337
|
-
assert estimator is not None # Keep mypy happy
|
338
|
-
|
339
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
340
|
-
|
341
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
342
|
-
dataset,
|
343
|
-
session,
|
344
|
-
estimator,
|
345
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
346
|
-
self.input_cols,
|
347
|
-
self.label_cols,
|
348
|
-
self.sample_weight_col,
|
349
|
-
)
|
350
|
-
|
351
353
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
352
354
|
if self._drop_input_cols:
|
353
355
|
return []
|
@@ -535,11 +537,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
535
537
|
subproject=_SUBPROJECT,
|
536
538
|
custom_tags=dict([("autogen", True)]),
|
537
539
|
)
|
538
|
-
@telemetry.add_stmt_params_to_df(
|
539
|
-
project=_PROJECT,
|
540
|
-
subproject=_SUBPROJECT,
|
541
|
-
custom_tags=dict([("autogen", True)]),
|
542
|
-
)
|
543
540
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
544
541
|
"""Predict the closest cluster each sample in X belongs to
|
545
542
|
For more details on this function, see [sklearn.cluster.MiniBatchKMeans.predict]
|
@@ -593,11 +590,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
593
590
|
subproject=_SUBPROJECT,
|
594
591
|
custom_tags=dict([("autogen", True)]),
|
595
592
|
)
|
596
|
-
@telemetry.add_stmt_params_to_df(
|
597
|
-
project=_PROJECT,
|
598
|
-
subproject=_SUBPROJECT,
|
599
|
-
custom_tags=dict([("autogen", True)]),
|
600
|
-
)
|
601
593
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
602
594
|
"""Transform X to a cluster-distance space
|
603
595
|
For more details on this function, see [sklearn.cluster.MiniBatchKMeans.transform]
|
@@ -658,7 +650,8 @@ class MiniBatchKMeans(BaseTransformer):
|
|
658
650
|
if True:
|
659
651
|
self.fit(dataset)
|
660
652
|
assert self._sklearn_object is not None
|
661
|
-
|
653
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
654
|
+
return labels
|
662
655
|
else:
|
663
656
|
raise NotImplementedError
|
664
657
|
|
@@ -694,6 +687,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
694
687
|
output_cols = []
|
695
688
|
|
696
689
|
# Make sure column names are valid snowflake identifiers.
|
690
|
+
assert output_cols is not None # Make MyPy happy
|
697
691
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
698
692
|
|
699
693
|
return rv
|
@@ -704,11 +698,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
704
698
|
subproject=_SUBPROJECT,
|
705
699
|
custom_tags=dict([("autogen", True)]),
|
706
700
|
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
701
|
def predict_proba(
|
713
702
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
714
703
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -749,11 +738,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
749
738
|
subproject=_SUBPROJECT,
|
750
739
|
custom_tags=dict([("autogen", True)]),
|
751
740
|
)
|
752
|
-
@telemetry.add_stmt_params_to_df(
|
753
|
-
project=_PROJECT,
|
754
|
-
subproject=_SUBPROJECT,
|
755
|
-
custom_tags=dict([("autogen", True)]),
|
756
|
-
)
|
757
741
|
def predict_log_proba(
|
758
742
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
759
743
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -790,16 +774,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
790
774
|
return output_df
|
791
775
|
|
792
776
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
793
|
-
@telemetry.send_api_usage_telemetry(
|
794
|
-
project=_PROJECT,
|
795
|
-
subproject=_SUBPROJECT,
|
796
|
-
custom_tags=dict([("autogen", True)]),
|
797
|
-
)
|
798
|
-
@telemetry.add_stmt_params_to_df(
|
799
|
-
project=_PROJECT,
|
800
|
-
subproject=_SUBPROJECT,
|
801
|
-
custom_tags=dict([("autogen", True)]),
|
802
|
-
)
|
803
777
|
def decision_function(
|
804
778
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
805
779
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -900,11 +874,6 @@ class MiniBatchKMeans(BaseTransformer):
|
|
900
874
|
subproject=_SUBPROJECT,
|
901
875
|
custom_tags=dict([("autogen", True)]),
|
902
876
|
)
|
903
|
-
@telemetry.add_stmt_params_to_df(
|
904
|
-
project=_PROJECT,
|
905
|
-
subproject=_SUBPROJECT,
|
906
|
-
custom_tags=dict([("autogen", True)]),
|
907
|
-
)
|
908
877
|
def kneighbors(
|
909
878
|
self,
|
910
879
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -964,9 +933,9 @@ class MiniBatchKMeans(BaseTransformer):
|
|
964
933
|
# For classifier, the type of predict is the same as the type of label
|
965
934
|
if self._sklearn_object._estimator_type == 'classifier':
|
966
935
|
# label columns is the desired type for output
|
967
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
936
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
968
937
|
# rename the output columns
|
969
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
938
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
970
939
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
971
940
|
([] if self._drop_input_cols else inputs)
|
972
941
|
+ outputs)
|