snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianMixture(BaseTransformer):
|
57
58
|
r"""Gaussian Mixture
|
58
59
|
For more details on this class, see [sklearn.mixture.GaussianMixture]
|
@@ -60,6 +61,49 @@ class GaussianMixture(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=1
|
64
108
|
The number of mixture components.
|
65
109
|
|
@@ -140,42 +184,6 @@ class GaussianMixture(BaseTransformer):
|
|
140
184
|
|
141
185
|
verbose_interval: int, default=10
|
142
186
|
Number of iteration done before the next print.
|
143
|
-
|
144
|
-
input_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that contain features.
|
146
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
147
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
148
|
-
parameters are considered input columns.
|
149
|
-
|
150
|
-
label_cols: Optional[Union[str, List[str]]]
|
151
|
-
A string or list of strings representing column names that contain labels.
|
152
|
-
This is a required param for estimators, as there is no way to infer these
|
153
|
-
columns. If this parameter is not specified, then object is fitted without
|
154
|
-
labels (like a transformer).
|
155
|
-
|
156
|
-
output_cols: Optional[Union[str, List[str]]]
|
157
|
-
A string or list of strings representing column names that will store the
|
158
|
-
output of predict and transform operations. The length of output_cols must
|
159
|
-
match the expected number of output columns from the specific estimator or
|
160
|
-
transformer class used.
|
161
|
-
If this parameter is not specified, output column names are derived by
|
162
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
163
|
-
column names work for estimator's predict() method, but output_cols must
|
164
|
-
be set explicitly for transformers.
|
165
|
-
|
166
|
-
sample_weight_col: Optional[str]
|
167
|
-
A string representing the column name containing the sample weights.
|
168
|
-
This argument is only required when working with weighted datasets.
|
169
|
-
|
170
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
171
|
-
A string or a list of strings indicating column names to be excluded from any
|
172
|
-
operations (such as train, transform, or inference). These specified column(s)
|
173
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
174
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
175
|
-
columns, like index columns, during training or inference.
|
176
|
-
|
177
|
-
drop_input_cols: Optional[bool], default=False
|
178
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
179
187
|
"""
|
180
188
|
|
181
189
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -210,7 +218,7 @@ class GaussianMixture(BaseTransformer):
|
|
210
218
|
self.set_passthrough_cols(passthrough_cols)
|
211
219
|
self.set_drop_input_cols(drop_input_cols)
|
212
220
|
self.set_sample_weight_col(sample_weight_col)
|
213
|
-
deps = set(
|
221
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
214
222
|
|
215
223
|
self._deps = list(deps)
|
216
224
|
|
@@ -232,13 +240,14 @@ class GaussianMixture(BaseTransformer):
|
|
232
240
|
args=init_args,
|
233
241
|
klass=sklearn.mixture.GaussianMixture
|
234
242
|
)
|
235
|
-
self._sklearn_object = sklearn.mixture.GaussianMixture(
|
243
|
+
self._sklearn_object: Any = sklearn.mixture.GaussianMixture(
|
236
244
|
**cleaned_up_init_args,
|
237
245
|
)
|
238
246
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
239
247
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
240
248
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
241
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
249
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
250
|
+
self._autogenerated = True
|
242
251
|
|
243
252
|
def _get_rand_id(self) -> str:
|
244
253
|
"""
|
@@ -294,54 +303,48 @@ class GaussianMixture(BaseTransformer):
|
|
294
303
|
self
|
295
304
|
"""
|
296
305
|
self._infer_input_output_cols(dataset)
|
297
|
-
if isinstance(dataset,
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
self.
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
306
|
+
if isinstance(dataset, DataFrame):
|
307
|
+
session = dataset._session
|
308
|
+
assert session is not None # keep mypy happy
|
309
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
310
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
311
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
312
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
313
|
+
|
314
|
+
# Specify input columns so column pruning will be enforced
|
315
|
+
selected_cols = self._get_active_columns()
|
316
|
+
if len(selected_cols) > 0:
|
317
|
+
dataset = dataset.select(selected_cols)
|
318
|
+
|
319
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
320
|
+
|
321
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
322
|
+
if SNOWML_SPROC_ENV in os.environ:
|
323
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
324
|
+
project=_PROJECT,
|
325
|
+
subproject=_SUBPROJECT,
|
326
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianMixture.__class__.__name__),
|
327
|
+
api_calls=[Session.call],
|
328
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
329
|
+
)
|
330
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
331
|
+
pd_df.columns = dataset.columns
|
332
|
+
dataset = pd_df
|
333
|
+
|
334
|
+
model_trainer = ModelTrainerBuilder.build(
|
335
|
+
estimator=self._sklearn_object,
|
336
|
+
dataset=dataset,
|
337
|
+
input_cols=self.input_cols,
|
338
|
+
label_cols=self.label_cols,
|
339
|
+
sample_weight_col=self.sample_weight_col,
|
340
|
+
autogenerated=self._autogenerated,
|
341
|
+
subproject=_SUBPROJECT
|
342
|
+
)
|
343
|
+
self._sklearn_object = model_trainer.train()
|
313
344
|
self._is_fitted = True
|
314
345
|
self._get_model_signatures(dataset)
|
315
346
|
return self
|
316
347
|
|
317
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
318
|
-
session = dataset._session
|
319
|
-
assert session is not None # keep mypy happy
|
320
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
321
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
322
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
323
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
324
|
-
|
325
|
-
# Specify input columns so column pruning will be enforced
|
326
|
-
selected_cols = self._get_active_columns()
|
327
|
-
if len(selected_cols) > 0:
|
328
|
-
dataset = dataset.select(selected_cols)
|
329
|
-
|
330
|
-
estimator = self._sklearn_object
|
331
|
-
assert estimator is not None # Keep mypy happy
|
332
|
-
|
333
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
334
|
-
|
335
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
336
|
-
dataset,
|
337
|
-
session,
|
338
|
-
estimator,
|
339
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
340
|
-
self.input_cols,
|
341
|
-
self.label_cols,
|
342
|
-
self.sample_weight_col,
|
343
|
-
)
|
344
|
-
|
345
348
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
346
349
|
if self._drop_input_cols:
|
347
350
|
return []
|
@@ -529,11 +532,6 @@ class GaussianMixture(BaseTransformer):
|
|
529
532
|
subproject=_SUBPROJECT,
|
530
533
|
custom_tags=dict([("autogen", True)]),
|
531
534
|
)
|
532
|
-
@telemetry.add_stmt_params_to_df(
|
533
|
-
project=_PROJECT,
|
534
|
-
subproject=_SUBPROJECT,
|
535
|
-
custom_tags=dict([("autogen", True)]),
|
536
|
-
)
|
537
535
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
538
536
|
"""Predict the labels for the data samples in X using trained model
|
539
537
|
For more details on this function, see [sklearn.mixture.GaussianMixture.predict]
|
@@ -587,11 +585,6 @@ class GaussianMixture(BaseTransformer):
|
|
587
585
|
subproject=_SUBPROJECT,
|
588
586
|
custom_tags=dict([("autogen", True)]),
|
589
587
|
)
|
590
|
-
@telemetry.add_stmt_params_to_df(
|
591
|
-
project=_PROJECT,
|
592
|
-
subproject=_SUBPROJECT,
|
593
|
-
custom_tags=dict([("autogen", True)]),
|
594
|
-
)
|
595
588
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
596
589
|
"""Method not supported for this class.
|
597
590
|
|
@@ -650,7 +643,8 @@ class GaussianMixture(BaseTransformer):
|
|
650
643
|
if False:
|
651
644
|
self.fit(dataset)
|
652
645
|
assert self._sklearn_object is not None
|
653
|
-
|
646
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
647
|
+
return labels
|
654
648
|
else:
|
655
649
|
raise NotImplementedError
|
656
650
|
|
@@ -686,6 +680,7 @@ class GaussianMixture(BaseTransformer):
|
|
686
680
|
output_cols = []
|
687
681
|
|
688
682
|
# Make sure column names are valid snowflake identifiers.
|
683
|
+
assert output_cols is not None # Make MyPy happy
|
689
684
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
690
685
|
|
691
686
|
return rv
|
@@ -696,11 +691,6 @@ class GaussianMixture(BaseTransformer):
|
|
696
691
|
subproject=_SUBPROJECT,
|
697
692
|
custom_tags=dict([("autogen", True)]),
|
698
693
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
694
|
def predict_proba(
|
705
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
706
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -743,11 +733,6 @@ class GaussianMixture(BaseTransformer):
|
|
743
733
|
subproject=_SUBPROJECT,
|
744
734
|
custom_tags=dict([("autogen", True)]),
|
745
735
|
)
|
746
|
-
@telemetry.add_stmt_params_to_df(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
736
|
def predict_log_proba(
|
752
737
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
753
738
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -786,16 +771,6 @@ class GaussianMixture(BaseTransformer):
|
|
786
771
|
return output_df
|
787
772
|
|
788
773
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
789
|
-
@telemetry.send_api_usage_telemetry(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
|
-
@telemetry.add_stmt_params_to_df(
|
795
|
-
project=_PROJECT,
|
796
|
-
subproject=_SUBPROJECT,
|
797
|
-
custom_tags=dict([("autogen", True)]),
|
798
|
-
)
|
799
774
|
def decision_function(
|
800
775
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
801
776
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -896,11 +871,6 @@ class GaussianMixture(BaseTransformer):
|
|
896
871
|
subproject=_SUBPROJECT,
|
897
872
|
custom_tags=dict([("autogen", True)]),
|
898
873
|
)
|
899
|
-
@telemetry.add_stmt_params_to_df(
|
900
|
-
project=_PROJECT,
|
901
|
-
subproject=_SUBPROJECT,
|
902
|
-
custom_tags=dict([("autogen", True)]),
|
903
|
-
)
|
904
874
|
def kneighbors(
|
905
875
|
self,
|
906
876
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -960,9 +930,9 @@ class GaussianMixture(BaseTransformer):
|
|
960
930
|
# For classifier, the type of predict is the same as the type of label
|
961
931
|
if self._sklearn_object._estimator_type == 'classifier':
|
962
932
|
# label columns is the desired type for output
|
963
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
933
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
964
934
|
# rename the output columns
|
965
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
935
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
966
936
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
967
937
|
([] if self._drop_input_cols else inputs)
|
968
938
|
+ outputs)
|