snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -101,7 +101,7 @@ class OneHotEncoder(base.BaseTransformer):
101
101
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html).
102
102
 
103
103
  Args:
104
- categories: 'auto' or dict {column_name: ndarray([category])}, default='auto'
104
+ categories: 'auto' or dict {column_name: np.ndarray([category])}, default='auto'
105
105
  Categories (unique values) per feature:
106
106
  - 'auto': Determine categories automatically from the training data.
107
107
  - dict: ``categories[column_name]`` holds the categories expected in
@@ -109,6 +109,7 @@ class OneHotEncoder(base.BaseTransformer):
109
109
  and numeric values within a single feature, and should be sorted in
110
110
  case of numeric values.
111
111
  The used categories can be found in the ``categories_`` attribute.
112
+
112
113
  drop: {‘first’, ‘if_binary’} or an array-like of shape (n_features,), default=None
113
114
  Specifies a methodology to use to drop one of the categories per
114
115
  feature. This is useful in situations where perfectly collinear
@@ -128,15 +129,18 @@ class OneHotEncoder(base.BaseTransformer):
128
129
  When `max_categories` or `min_frequency` is configured to group
129
130
  infrequent categories, the dropping behavior is handled after the
130
131
  grouping.
132
+
131
133
  sparse: bool, default=False
132
134
  Will return a column with sparse representation if set True else will return
133
135
  a separate column for each category.
136
+
134
137
  handle_unknown: {'error', 'ignore'}, default='error'
135
138
  Specifies the way unknown categories are handled during :meth:`transform`.
136
139
  - 'error': Raise an error if an unknown category is present during transform.
137
140
  - 'ignore': When an unknown category is encountered during
138
141
  transform, the resulting one-hot encoded columns for this feature
139
142
  will be all zeros.
143
+
140
144
  min_frequency: int or float, default=None
141
145
  Specifies the minimum frequency below which a category will be
142
146
  considered infrequent.
@@ -144,22 +148,29 @@ class OneHotEncoder(base.BaseTransformer):
144
148
  infrequent.
145
149
  - If `float`, categories with a smaller cardinality than
146
150
  `min_frequency * n_samples` will be considered infrequent.
151
+
147
152
  max_categories: int, default=None
148
153
  Specifies an upper limit to the number of output features for each input
149
154
  feature when considering infrequent categories. If there are infrequent
150
155
  categories, `max_categories` includes the category representing the
151
156
  infrequent categories along with the frequent categories. If `None`,
152
157
  there is no limit to the number of output features.
153
- input_cols: str or Iterable [column_name], default=None
158
+
159
+ input_cols: Optional[Union[str, List[str]]], default=None
154
160
  Single or multiple input columns.
155
- output_cols: str or Iterable [column_name], default=None
161
+
162
+ output_cols: Optional[Union[str, List[str]]], default=None
156
163
  Single or multiple output columns.
157
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
158
- operations (such as train, transform, or inference). These specified column(s)
159
- will remain untouched throughout the process. This option is helpful in scenarios
160
- requiring automatic input_cols inference, but need to avoid using specific
161
- columns, like index columns, during training or inference.
162
- drop_input_cols: Remove input columns from output if set True. False by default.
164
+
165
+ passthrough_cols: Optional[Union[str, List[str]]]
166
+ A string or a list of strings indicating column names to be excluded from any
167
+ operations (such as train, transform, or inference). These specified column(s)
168
+ will remain untouched throughout the process. This option is helpful in scenarios
169
+ requiring automatic input_cols inference, but need to avoid using specific
170
+ columns, like index columns, during training or inference.
171
+
172
+ drop_input_cols: Optional[Union[str, List[str]]]
173
+ Remove input columns from output if set True. False by default.
163
174
 
164
175
  Attributes:
165
176
  categories_: dict {column_name: ndarray([category])}
@@ -665,10 +676,6 @@ class OneHotEncoder(base.BaseTransformer):
665
676
  project=base.PROJECT,
666
677
  subproject=base.SUBPROJECT,
667
678
  )
668
- @telemetry.add_stmt_params_to_df(
669
- project=base.PROJECT,
670
- subproject=base.SUBPROJECT,
671
- )
672
679
  def transform(
673
680
  self, dataset: Union[snowpark.DataFrame, pd.DataFrame]
674
681
  ) -> Union[snowpark.DataFrame, pd.DataFrame, sparse.csr_matrix]:
@@ -45,31 +45,47 @@ class OrdinalEncoder(base.BaseTransformer):
45
45
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html).
46
46
 
47
47
  Args:
48
- categories: The string 'auto' (the default) causes the categories to be extracted from the input columns.
48
+ categories: Union[str, Dict[str, type_utils.LiteralNDArrayType]], default="auto"
49
+ The string 'auto' (the default) causes the categories to be extracted from the input columns.
49
50
  To specify the categories yourself, pass a dictionary mapping the column name to an ndarray containing the
50
51
  categories.
51
- handle_unknown: Specifies how unknown categories are handled during transformation. Applicable only if
52
+
53
+ handle_unknown: str, default="error"
54
+ Specifies how unknown categories are handled during transformation. Applicable only if
52
55
  categories is not 'auto'.
53
56
  Valid values are:
54
57
  - 'error': Raise an error if an unknown category is present during transform (default).
55
58
  - 'use_encoded_value': When an unknown category is encountered during transform, the specified
56
59
  encoded_missing_value (below) is used.
57
- unknown_value: When the parameter handle_unknown is set to 'use_encoded_value', this parameter is required and
60
+
61
+ unknown_value: Optional[Union[int, float]], default=None
62
+ When the parameter handle_unknown is set to 'use_encoded_value', this parameter is required and
58
63
  will set the encoded value of unknown categories. It has to be distinct from the values used to encode any
59
64
  of the categories in `fit`.
60
- encoded_missing_value: The value to be used to encode unknown categories.
61
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be encoded.
62
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
65
+
66
+ encoded_missing_value: Union[int, float], default=np.nan
67
+ The value to be used to encode unknown categories.
68
+
69
+ input_cols: Optional[Union[str, List[str]]], default=None
70
+ The name(s) of one or more columns in a DataFrame containing a feature to be encoded.
71
+
72
+ output_cols: Optional[Union[str, List[str]]], default=None
73
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
63
74
  columns specified must match the number of input columns.
64
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
75
+
76
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
77
+ A string or a list of strings indicating column names to be excluded from any
65
78
  operations (such as train, transform, or inference). These specified column(s)
66
79
  will remain untouched throughout the process. This option is helpful in scenarios
67
80
  requiring automatic input_cols inference, but need to avoid using specific
68
81
  columns, like index columns, during training or inference.
69
- drop_input_cols: Remove input columns from output if set True. False by default.
82
+
83
+ drop_input_cols: Optional[bool], default=False
84
+ Remove input columns from output if set True. False by default.
70
85
 
71
86
  Attributes:
72
- categories_ (dict of ndarray): The categories of each feature determined during fitting. Maps input column
87
+ categories_ (dict of ndarray): List[type_utils.LiteralNDArrayType]
88
+ The categories of each feature determined during fitting. Maps input column
73
89
  names to an array of the detected categories.
74
90
  Attributes are valid only after fit() has been called.
75
91
  """
@@ -429,10 +445,6 @@ class OrdinalEncoder(base.BaseTransformer):
429
445
  project=base.PROJECT,
430
446
  subproject=base.SUBPROJECT,
431
447
  )
432
- @telemetry.add_stmt_params_to_df(
433
- project=base.PROJECT,
434
- subproject=base.SUBPROJECT,
435
- )
436
448
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
437
449
  """
438
450
  Transform dataset to ordinal codes.
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.preprocessing".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class PolynomialFeatures(BaseTransformer):
57
58
  r"""Generate polynomial and interaction features
58
59
  For more details on this class, see [sklearn.preprocessing.PolynomialFeatures]
@@ -60,6 +61,49 @@ class PolynomialFeatures(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  degree: int or tuple (min_degree, max_degree), default=2
64
108
  If a single int is given, it specifies the maximal degree of the
65
109
  polynomial features. If a tuple `(min_degree, max_degree)` is passed,
@@ -84,42 +128,6 @@ class PolynomialFeatures(BaseTransformer):
84
128
  order: {'C', 'F'}, default='C'
85
129
  Order of output array in the dense case. `'F'` order is faster to
86
130
  compute, but may slow down subsequent estimators.
87
-
88
- input_cols: Optional[Union[str, List[str]]]
89
- A string or list of strings representing column names that contain features.
90
- If this parameter is not specified, all columns in the input DataFrame except
91
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
92
- parameters are considered input columns.
93
-
94
- label_cols: Optional[Union[str, List[str]]]
95
- A string or list of strings representing column names that contain labels.
96
- This is a required param for estimators, as there is no way to infer these
97
- columns. If this parameter is not specified, then object is fitted without
98
- labels (like a transformer).
99
-
100
- output_cols: Optional[Union[str, List[str]]]
101
- A string or list of strings representing column names that will store the
102
- output of predict and transform operations. The length of output_cols must
103
- match the expected number of output columns from the specific estimator or
104
- transformer class used.
105
- If this parameter is not specified, output column names are derived by
106
- adding an OUTPUT_ prefix to the label column names. These inferred output
107
- column names work for estimator's predict() method, but output_cols must
108
- be set explicitly for transformers.
109
-
110
- sample_weight_col: Optional[str]
111
- A string representing the column name containing the sample weights.
112
- This argument is only required when working with weighted datasets.
113
-
114
- passthrough_cols: Optional[Union[str, List[str]]]
115
- A string or a list of strings indicating column names to be excluded from any
116
- operations (such as train, transform, or inference). These specified column(s)
117
- will remain untouched throughout the process. This option is helpful in scenarios
118
- requiring automatic input_cols inference, but need to avoid using specific
119
- columns, like index columns, during training or inference.
120
-
121
- drop_input_cols: Optional[bool], default=False
122
- If set, the response of predict(), transform() methods will not contain input columns.
123
131
  """
124
132
 
125
133
  def __init__( # type: ignore[no-untyped-def]
@@ -144,7 +152,7 @@ class PolynomialFeatures(BaseTransformer):
144
152
  self.set_passthrough_cols(passthrough_cols)
145
153
  self.set_drop_input_cols(drop_input_cols)
146
154
  self.set_sample_weight_col(sample_weight_col)
147
- deps = set(SklearnWrapperProvider().dependencies)
155
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
148
156
 
149
157
  self._deps = list(deps)
150
158
 
@@ -156,13 +164,14 @@ class PolynomialFeatures(BaseTransformer):
156
164
  args=init_args,
157
165
  klass=sklearn.preprocessing.PolynomialFeatures
158
166
  )
159
- self._sklearn_object = sklearn.preprocessing.PolynomialFeatures(
167
+ self._sklearn_object: Any = sklearn.preprocessing.PolynomialFeatures(
160
168
  **cleaned_up_init_args,
161
169
  )
162
170
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
163
171
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
164
172
  self._snowpark_cols: Optional[List[str]] = self.input_cols
165
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
173
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialFeatures.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
174
+ self._autogenerated = True
166
175
 
167
176
  def _get_rand_id(self) -> str:
168
177
  """
@@ -218,54 +227,48 @@ class PolynomialFeatures(BaseTransformer):
218
227
  self
219
228
  """
220
229
  self._infer_input_output_cols(dataset)
221
- if isinstance(dataset, pd.DataFrame):
222
- assert self._sklearn_object is not None # keep mypy happy
223
- self._sklearn_object = self._handlers.fit_pandas(
224
- dataset,
225
- self._sklearn_object,
226
- self.input_cols,
227
- self.label_cols,
228
- self.sample_weight_col
229
- )
230
- elif isinstance(dataset, DataFrame):
231
- self._fit_snowpark(dataset)
232
- else:
233
- raise TypeError(
234
- f"Unexpected dataset type: {type(dataset)}."
235
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
236
- )
230
+ if isinstance(dataset, DataFrame):
231
+ session = dataset._session
232
+ assert session is not None # keep mypy happy
233
+ # Validate that key package version in user workspace are supported in snowflake conda channel
234
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
235
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
236
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
237
+
238
+ # Specify input columns so column pruning will be enforced
239
+ selected_cols = self._get_active_columns()
240
+ if len(selected_cols) > 0:
241
+ dataset = dataset.select(selected_cols)
242
+
243
+ self._snowpark_cols = dataset.select(self.input_cols).columns
244
+
245
+ # If we are already in a stored procedure, no need to kick off another one.
246
+ if SNOWML_SPROC_ENV in os.environ:
247
+ statement_params = telemetry.get_function_usage_statement_params(
248
+ project=_PROJECT,
249
+ subproject=_SUBPROJECT,
250
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialFeatures.__class__.__name__),
251
+ api_calls=[Session.call],
252
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
+ )
254
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
255
+ pd_df.columns = dataset.columns
256
+ dataset = pd_df
257
+
258
+ model_trainer = ModelTrainerBuilder.build(
259
+ estimator=self._sklearn_object,
260
+ dataset=dataset,
261
+ input_cols=self.input_cols,
262
+ label_cols=self.label_cols,
263
+ sample_weight_col=self.sample_weight_col,
264
+ autogenerated=self._autogenerated,
265
+ subproject=_SUBPROJECT
266
+ )
267
+ self._sklearn_object = model_trainer.train()
237
268
  self._is_fitted = True
238
269
  self._get_model_signatures(dataset)
239
270
  return self
240
271
 
241
- def _fit_snowpark(self, dataset: DataFrame) -> None:
242
- session = dataset._session
243
- assert session is not None # keep mypy happy
244
- # Validate that key package version in user workspace are supported in snowflake conda channel
245
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
246
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
247
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
248
-
249
- # Specify input columns so column pruning will be enforced
250
- selected_cols = self._get_active_columns()
251
- if len(selected_cols) > 0:
252
- dataset = dataset.select(selected_cols)
253
-
254
- estimator = self._sklearn_object
255
- assert estimator is not None # Keep mypy happy
256
-
257
- self._snowpark_cols = dataset.select(self.input_cols).columns
258
-
259
- self._sklearn_object = self._handlers.fit_snowpark(
260
- dataset,
261
- session,
262
- estimator,
263
- ["snowflake-snowpark-python"] + self._get_dependencies(),
264
- self.input_cols,
265
- self.label_cols,
266
- self.sample_weight_col,
267
- )
268
-
269
272
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
270
273
  if self._drop_input_cols:
271
274
  return []
@@ -453,11 +456,6 @@ class PolynomialFeatures(BaseTransformer):
453
456
  subproject=_SUBPROJECT,
454
457
  custom_tags=dict([("autogen", True)]),
455
458
  )
456
- @telemetry.add_stmt_params_to_df(
457
- project=_PROJECT,
458
- subproject=_SUBPROJECT,
459
- custom_tags=dict([("autogen", True)]),
460
- )
461
459
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
462
460
  """Method not supported for this class.
463
461
 
@@ -509,11 +507,6 @@ class PolynomialFeatures(BaseTransformer):
509
507
  subproject=_SUBPROJECT,
510
508
  custom_tags=dict([("autogen", True)]),
511
509
  )
512
- @telemetry.add_stmt_params_to_df(
513
- project=_PROJECT,
514
- subproject=_SUBPROJECT,
515
- custom_tags=dict([("autogen", True)]),
516
- )
517
510
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
518
511
  """Transform data to polynomial features
519
512
  For more details on this function, see [sklearn.preprocessing.PolynomialFeatures.transform]
@@ -572,7 +565,8 @@ class PolynomialFeatures(BaseTransformer):
572
565
  if False:
573
566
  self.fit(dataset)
574
567
  assert self._sklearn_object is not None
575
- return self._sklearn_object.labels_
568
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
569
+ return labels
576
570
  else:
577
571
  raise NotImplementedError
578
572
 
@@ -608,6 +602,7 @@ class PolynomialFeatures(BaseTransformer):
608
602
  output_cols = []
609
603
 
610
604
  # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
611
606
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
612
607
 
613
608
  return rv
@@ -618,11 +613,6 @@ class PolynomialFeatures(BaseTransformer):
618
613
  subproject=_SUBPROJECT,
619
614
  custom_tags=dict([("autogen", True)]),
620
615
  )
621
- @telemetry.add_stmt_params_to_df(
622
- project=_PROJECT,
623
- subproject=_SUBPROJECT,
624
- custom_tags=dict([("autogen", True)]),
625
- )
626
616
  def predict_proba(
627
617
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
628
618
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -663,11 +653,6 @@ class PolynomialFeatures(BaseTransformer):
663
653
  subproject=_SUBPROJECT,
664
654
  custom_tags=dict([("autogen", True)]),
665
655
  )
666
- @telemetry.add_stmt_params_to_df(
667
- project=_PROJECT,
668
- subproject=_SUBPROJECT,
669
- custom_tags=dict([("autogen", True)]),
670
- )
671
656
  def predict_log_proba(
672
657
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
673
658
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -704,16 +689,6 @@ class PolynomialFeatures(BaseTransformer):
704
689
  return output_df
705
690
 
706
691
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
707
- @telemetry.send_api_usage_telemetry(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
- @telemetry.add_stmt_params_to_df(
713
- project=_PROJECT,
714
- subproject=_SUBPROJECT,
715
- custom_tags=dict([("autogen", True)]),
716
- )
717
692
  def decision_function(
718
693
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
719
694
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -812,11 +787,6 @@ class PolynomialFeatures(BaseTransformer):
812
787
  subproject=_SUBPROJECT,
813
788
  custom_tags=dict([("autogen", True)]),
814
789
  )
815
- @telemetry.add_stmt_params_to_df(
816
- project=_PROJECT,
817
- subproject=_SUBPROJECT,
818
- custom_tags=dict([("autogen", True)]),
819
- )
820
790
  def kneighbors(
821
791
  self,
822
792
  dataset: Union[DataFrame, pd.DataFrame],
@@ -876,9 +846,9 @@ class PolynomialFeatures(BaseTransformer):
876
846
  # For classifier, the type of predict is the same as the type of label
877
847
  if self._sklearn_object._estimator_type == 'classifier':
878
848
  # label columns is the desired type for output
879
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
849
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
880
850
  # rename the output columns
881
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
851
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
882
852
  self._model_signature_dict["predict"] = ModelSignature(inputs,
883
853
  ([] if self._drop_input_cols else inputs)
884
854
  + outputs)
@@ -20,28 +20,46 @@ class RobustScaler(base.BaseTransformer):
20
20
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html).
21
21
 
22
22
  Args:
23
- with_centering: If True, center the data around zero before scaling.
24
- with_scaling: If True, scale the data to interquartile range.
25
- quantile_range: tuple like (q_min, q_max), where 0.0 < q_min < q_max < 100.0, default=(25.0, 75.0). Quantile
23
+ with_centering: bool, default=True
24
+ If True, center the data around zero before scaling.
25
+
26
+ with_scaling: bool, default=True
27
+ If True, scale the data to interquartile range.
28
+
29
+ quantile_range: Tuple[float, float], default=(25.0, 75.0)
30
+ tuple like (q_min, q_max), where 0.0 < q_min < q_max < 100.0, default=(25.0, 75.0). Quantile
26
31
  range used to calculate scale_. By default, this is equal to the IQR, i.e., q_min is the first quantile and
27
32
  q_max is the third quantile.
28
- unit_variance: If True, scale data so that normally-distributed features have a variance of 1. In general, if
33
+
34
+ unit_variance: bool, default=False
35
+ If True, scale data so that normally-distributed features have a variance of 1. In general, if
29
36
  the difference between the x-values of q_max and q_min for a standard normal distribution is greater than 1,
30
37
  the dataset is scaled down. If less than 1, the dataset is scaled up.
31
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
32
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
38
+
39
+ input_cols: Optional[Union[str, List[str]]], default=None
40
+ The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
41
+
42
+ output_cols: Optional[Union[str, List[str]]], default=None
43
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
33
44
  columns specified must match the number of input columns. For dense output, the column names specified are
34
45
  used as base names for the columns created for each category.
35
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
46
+
47
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
48
+ A string or a list of strings indicating column names to be excluded from any
36
49
  operations (such as train, transform, or inference). These specified column(s)
37
50
  will remain untouched throughout the process. This option is helpful in scenarios
38
51
  requiring automatic input_cols inference, but need to avoid using specific
39
52
  columns, like index columns, during training or inference.
40
- drop_input_cols: Remove input columns from output if set True. False by default.
53
+
54
+ drop_input_cols: Optional[bool], default=False
55
+ Remove input columns from output if set True. False by default.
41
56
 
42
57
  Attributes:
43
- center_: Dictionary mapping input column name to the median value for that feature.
44
- scale_: Dictionary mapping input column name to the (scaled) interquartile range for that feature.
58
+ center_: Dict[str, float]
59
+ Dictionary mapping input column name to the median value for that feature.
60
+
61
+ scale_: Dict[str, float]
62
+ Dictionary mapping input column name to the (scaled) interquartile range for that feature.
45
63
  """
46
64
 
47
65
  def __init__(
@@ -199,10 +217,6 @@ class RobustScaler(base.BaseTransformer):
199
217
  project=base.PROJECT,
200
218
  subproject=base.SUBPROJECT,
201
219
  )
202
- @telemetry.add_stmt_params_to_df(
203
- project=base.PROJECT,
204
- subproject=base.SUBPROJECT,
205
- )
206
220
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
207
221
  """
208
222
  Center and scale the data.
@@ -19,24 +19,40 @@ class StandardScaler(base.BaseTransformer):
19
19
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html).
20
20
 
21
21
  Args:
22
- with_mean: If True, center the data before scaling.
23
- with_std: If True, scale the data unit variance (i.e. unit standard deviation).
24
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
25
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
22
+ with_mean: bool, default=True
23
+ If True, center the data before scaling.
24
+
25
+ with_std: bool, default=True
26
+ If True, scale the data unit variance (i.e. unit standard deviation).
27
+
28
+ input_cols: Optional[Union[str, List[str]]], default=None
29
+ The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
30
+
31
+ output_cols: Optional[Union[str, List[str]]], default=None
32
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
26
33
  columns specified must match the number of input columns.
27
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
34
+
35
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
36
+ A string or a list of strings indicating column names to be excluded from any
28
37
  operations (such as train, transform, or inference). These specified column(s)
29
38
  will remain untouched throughout the process. This option is helpful in scenarios
30
39
  requiring automatic input_cols inference, but need to avoid using specific
31
40
  columns, like index columns, during training or inference.
32
- drop_input_cols: Remove input columns from output if set True. False by default.
41
+
42
+ drop_input_cols: Optional[bool], default=False
43
+ Remove input columns from output if set True. False by default.
33
44
 
34
45
  Attributes:
35
- scale_: Dictionary mapping input column names to relative scaling factor to achieve zero mean and unit variance.
46
+ scale_: Optional[Dict[str, float]] = {}
47
+ Dictionary mapping input column names to relative scaling factor to achieve zero mean and unit variance.
36
48
  If a variance is zero, unit variance could not be achieved, and the data is left as-is, giving a scaling
37
49
  factor of 1. None if with_std is False.
38
- mean_: Dictionary mapping input column name to the mean value for that feature. None if with_mean is False.
39
- var_: Dictionary mapping input column name to the variance for that feature. Used to compute scale_. None if
50
+
51
+ mean_: Optional[Dict[str, float]] = {}
52
+ Dictionary mapping input column name to the mean value for that feature. None if with_mean is False.
53
+
54
+ var_: Optional[Dict[str, float]] = {}
55
+ Dictionary mapping input column name to the variance for that feature. Used to compute scale_. None if
40
56
  with_std is False
41
57
  """
42
58
 
@@ -177,10 +193,6 @@ class StandardScaler(base.BaseTransformer):
177
193
  project=base.PROJECT,
178
194
  subproject=base.SUBPROJECT,
179
195
  )
180
- @telemetry.add_stmt_params_to_df(
181
- project=base.PROJECT,
182
- subproject=base.SUBPROJECT,
183
- )
184
196
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
185
197
  """
186
198
  Perform standardization by centering and scaling.