snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KNeighborsRegressor(BaseTransformer):
|
57
58
|
r"""Regression based on k-nearest neighbors
|
58
59
|
For more details on this class, see [sklearn.neighbors.KNeighborsRegressor]
|
@@ -60,6 +61,51 @@ class KNeighborsRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_neighbors: int, default=5
|
64
110
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
111
|
|
@@ -127,42 +173,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
127
173
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
128
174
|
for more details.
|
129
175
|
Doesn't affect :meth:`fit` method.
|
130
|
-
|
131
|
-
input_cols: Optional[Union[str, List[str]]]
|
132
|
-
A string or list of strings representing column names that contain features.
|
133
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
134
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
135
|
-
parameters are considered input columns.
|
136
|
-
|
137
|
-
label_cols: Optional[Union[str, List[str]]]
|
138
|
-
A string or list of strings representing column names that contain labels.
|
139
|
-
This is a required param for estimators, as there is no way to infer these
|
140
|
-
columns. If this parameter is not specified, then object is fitted without
|
141
|
-
labels (like a transformer).
|
142
|
-
|
143
|
-
output_cols: Optional[Union[str, List[str]]]
|
144
|
-
A string or list of strings representing column names that will store the
|
145
|
-
output of predict and transform operations. The length of output_cols must
|
146
|
-
match the expected number of output columns from the specific estimator or
|
147
|
-
transformer class used.
|
148
|
-
If this parameter is not specified, output column names are derived by
|
149
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
150
|
-
column names work for estimator's predict() method, but output_cols must
|
151
|
-
be set explicitly for transformers.
|
152
|
-
|
153
|
-
sample_weight_col: Optional[str]
|
154
|
-
A string representing the column name containing the sample weights.
|
155
|
-
This argument is only required when working with weighted datasets.
|
156
|
-
|
157
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
158
|
-
A string or a list of strings indicating column names to be excluded from any
|
159
|
-
operations (such as train, transform, or inference). These specified column(s)
|
160
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
161
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
162
|
-
columns, like index columns, during training or inference.
|
163
|
-
|
164
|
-
drop_input_cols: Optional[bool], default=False
|
165
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
166
176
|
"""
|
167
177
|
|
168
178
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -191,7 +201,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
191
201
|
self.set_passthrough_cols(passthrough_cols)
|
192
202
|
self.set_drop_input_cols(drop_input_cols)
|
193
203
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
204
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
205
|
|
196
206
|
self._deps = list(deps)
|
197
207
|
|
@@ -207,13 +217,14 @@ class KNeighborsRegressor(BaseTransformer):
|
|
207
217
|
args=init_args,
|
208
218
|
klass=sklearn.neighbors.KNeighborsRegressor
|
209
219
|
)
|
210
|
-
self._sklearn_object = sklearn.neighbors.KNeighborsRegressor(
|
220
|
+
self._sklearn_object: Any = sklearn.neighbors.KNeighborsRegressor(
|
211
221
|
**cleaned_up_init_args,
|
212
222
|
)
|
213
223
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
214
224
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
215
225
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
216
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
226
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
227
|
+
self._autogenerated = True
|
217
228
|
|
218
229
|
def _get_rand_id(self) -> str:
|
219
230
|
"""
|
@@ -269,54 +280,48 @@ class KNeighborsRegressor(BaseTransformer):
|
|
269
280
|
self
|
270
281
|
"""
|
271
282
|
self._infer_input_output_cols(dataset)
|
272
|
-
if isinstance(dataset,
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
self.
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
283
|
+
if isinstance(dataset, DataFrame):
|
284
|
+
session = dataset._session
|
285
|
+
assert session is not None # keep mypy happy
|
286
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
287
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
288
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
289
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
290
|
+
|
291
|
+
# Specify input columns so column pruning will be enforced
|
292
|
+
selected_cols = self._get_active_columns()
|
293
|
+
if len(selected_cols) > 0:
|
294
|
+
dataset = dataset.select(selected_cols)
|
295
|
+
|
296
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
|
+
|
298
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
|
+
if SNOWML_SPROC_ENV in os.environ:
|
300
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
301
|
+
project=_PROJECT,
|
302
|
+
subproject=_SUBPROJECT,
|
303
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNeighborsRegressor.__class__.__name__),
|
304
|
+
api_calls=[Session.call],
|
305
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
|
+
)
|
307
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
308
|
+
pd_df.columns = dataset.columns
|
309
|
+
dataset = pd_df
|
310
|
+
|
311
|
+
model_trainer = ModelTrainerBuilder.build(
|
312
|
+
estimator=self._sklearn_object,
|
313
|
+
dataset=dataset,
|
314
|
+
input_cols=self.input_cols,
|
315
|
+
label_cols=self.label_cols,
|
316
|
+
sample_weight_col=self.sample_weight_col,
|
317
|
+
autogenerated=self._autogenerated,
|
318
|
+
subproject=_SUBPROJECT
|
319
|
+
)
|
320
|
+
self._sklearn_object = model_trainer.train()
|
288
321
|
self._is_fitted = True
|
289
322
|
self._get_model_signatures(dataset)
|
290
323
|
return self
|
291
324
|
|
292
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
293
|
-
session = dataset._session
|
294
|
-
assert session is not None # keep mypy happy
|
295
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
296
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
297
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
298
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
299
|
-
|
300
|
-
# Specify input columns so column pruning will be enforced
|
301
|
-
selected_cols = self._get_active_columns()
|
302
|
-
if len(selected_cols) > 0:
|
303
|
-
dataset = dataset.select(selected_cols)
|
304
|
-
|
305
|
-
estimator = self._sklearn_object
|
306
|
-
assert estimator is not None # Keep mypy happy
|
307
|
-
|
308
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
|
-
|
310
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
311
|
-
dataset,
|
312
|
-
session,
|
313
|
-
estimator,
|
314
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
315
|
-
self.input_cols,
|
316
|
-
self.label_cols,
|
317
|
-
self.sample_weight_col,
|
318
|
-
)
|
319
|
-
|
320
325
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
321
326
|
if self._drop_input_cols:
|
322
327
|
return []
|
@@ -504,11 +509,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
504
509
|
subproject=_SUBPROJECT,
|
505
510
|
custom_tags=dict([("autogen", True)]),
|
506
511
|
)
|
507
|
-
@telemetry.add_stmt_params_to_df(
|
508
|
-
project=_PROJECT,
|
509
|
-
subproject=_SUBPROJECT,
|
510
|
-
custom_tags=dict([("autogen", True)]),
|
511
|
-
)
|
512
512
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
513
513
|
"""Predict the target for the provided data
|
514
514
|
For more details on this function, see [sklearn.neighbors.KNeighborsRegressor.predict]
|
@@ -562,11 +562,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
562
562
|
subproject=_SUBPROJECT,
|
563
563
|
custom_tags=dict([("autogen", True)]),
|
564
564
|
)
|
565
|
-
@telemetry.add_stmt_params_to_df(
|
566
|
-
project=_PROJECT,
|
567
|
-
subproject=_SUBPROJECT,
|
568
|
-
custom_tags=dict([("autogen", True)]),
|
569
|
-
)
|
570
565
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
571
566
|
"""Method not supported for this class.
|
572
567
|
|
@@ -623,7 +618,8 @@ class KNeighborsRegressor(BaseTransformer):
|
|
623
618
|
if False:
|
624
619
|
self.fit(dataset)
|
625
620
|
assert self._sklearn_object is not None
|
626
|
-
|
621
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
622
|
+
return labels
|
627
623
|
else:
|
628
624
|
raise NotImplementedError
|
629
625
|
|
@@ -659,6 +655,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
659
655
|
output_cols = []
|
660
656
|
|
661
657
|
# Make sure column names are valid snowflake identifiers.
|
658
|
+
assert output_cols is not None # Make MyPy happy
|
662
659
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
663
660
|
|
664
661
|
return rv
|
@@ -669,11 +666,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
669
666
|
subproject=_SUBPROJECT,
|
670
667
|
custom_tags=dict([("autogen", True)]),
|
671
668
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
669
|
def predict_proba(
|
678
670
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
679
671
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -714,11 +706,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
714
706
|
subproject=_SUBPROJECT,
|
715
707
|
custom_tags=dict([("autogen", True)]),
|
716
708
|
)
|
717
|
-
@telemetry.add_stmt_params_to_df(
|
718
|
-
project=_PROJECT,
|
719
|
-
subproject=_SUBPROJECT,
|
720
|
-
custom_tags=dict([("autogen", True)]),
|
721
|
-
)
|
722
709
|
def predict_log_proba(
|
723
710
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
724
711
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -755,16 +742,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
755
742
|
return output_df
|
756
743
|
|
757
744
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
758
|
-
@telemetry.send_api_usage_telemetry(
|
759
|
-
project=_PROJECT,
|
760
|
-
subproject=_SUBPROJECT,
|
761
|
-
custom_tags=dict([("autogen", True)]),
|
762
|
-
)
|
763
|
-
@telemetry.add_stmt_params_to_df(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
745
|
def decision_function(
|
769
746
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
770
747
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -865,11 +842,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
865
842
|
subproject=_SUBPROJECT,
|
866
843
|
custom_tags=dict([("autogen", True)]),
|
867
844
|
)
|
868
|
-
@telemetry.add_stmt_params_to_df(
|
869
|
-
project=_PROJECT,
|
870
|
-
subproject=_SUBPROJECT,
|
871
|
-
custom_tags=dict([("autogen", True)]),
|
872
|
-
)
|
873
845
|
def kneighbors(
|
874
846
|
self,
|
875
847
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -931,9 +903,9 @@ class KNeighborsRegressor(BaseTransformer):
|
|
931
903
|
# For classifier, the type of predict is the same as the type of label
|
932
904
|
if self._sklearn_object._estimator_type == 'classifier':
|
933
905
|
# label columns is the desired type for output
|
934
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
906
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
935
907
|
# rename the output columns
|
936
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
908
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
937
909
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
938
910
|
([] if self._drop_input_cols else inputs)
|
939
911
|
+ outputs)
|