snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class BernoulliNB(BaseTransformer):
|
57
58
|
r"""Naive Bayes classifier for multivariate Bernoulli models
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.BernoulliNB]
|
@@ -60,62 +61,71 @@ class BernoulliNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
alpha: float or array-like of shape (n_features,), default=1.0
|
64
|
-
Additive (Laplace/Lidstone) smoothing parameter
|
65
|
-
(set alpha=0 and force_alpha=True, for no smoothing).
|
66
|
-
|
67
|
-
force_alpha: bool, default=False
|
68
|
-
If False and alpha is less than 1e-10, it will set alpha to
|
69
|
-
1e-10. If True, alpha will remain unchanged. This may cause
|
70
|
-
numerical errors if alpha is too close to 0.
|
71
|
-
|
72
|
-
binarize: float or None, default=0.0
|
73
|
-
Threshold for binarizing (mapping to booleans) of sample features.
|
74
|
-
If None, input is presumed to already consist of binary vectors.
|
75
|
-
|
76
|
-
fit_prior: bool, default=True
|
77
|
-
Whether to learn class prior probabilities or not.
|
78
|
-
If false, a uniform prior will be used.
|
79
|
-
|
80
|
-
class_prior: array-like of shape (n_classes,), default=None
|
81
|
-
Prior probabilities of the classes. If specified, the priors are not
|
82
|
-
adjusted according to the data.
|
83
64
|
|
84
65
|
input_cols: Optional[Union[str, List[str]]]
|
85
66
|
A string or list of strings representing column names that contain features.
|
86
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
87
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
88
|
-
parameters are considered input columns.
|
89
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
90
72
|
label_cols: Optional[Union[str, List[str]]]
|
91
73
|
A string or list of strings representing column names that contain labels.
|
92
|
-
|
93
|
-
|
94
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
95
76
|
|
96
77
|
output_cols: Optional[Union[str, List[str]]]
|
97
78
|
A string or list of strings representing column names that will store the
|
98
79
|
output of predict and transform operations. The length of output_cols must
|
99
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
100
81
|
transformer class used.
|
101
|
-
If this parameter
|
102
|
-
|
103
|
-
|
104
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
105
91
|
|
106
92
|
sample_weight_col: Optional[str]
|
107
93
|
A string representing the column name containing the sample weights.
|
108
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
109
97
|
|
110
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
111
99
|
A string or a list of strings indicating column names to be excluded from any
|
112
100
|
operations (such as train, transform, or inference). These specified column(s)
|
113
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
114
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
115
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
116
105
|
|
117
106
|
drop_input_cols: Optional[bool], default=False
|
118
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
alpha: float or array-like of shape (n_features,), default=1.0
|
110
|
+
Additive (Laplace/Lidstone) smoothing parameter
|
111
|
+
(set alpha=0 and force_alpha=True, for no smoothing).
|
112
|
+
|
113
|
+
force_alpha: bool, default=False
|
114
|
+
If False and alpha is less than 1e-10, it will set alpha to
|
115
|
+
1e-10. If True, alpha will remain unchanged. This may cause
|
116
|
+
numerical errors if alpha is too close to 0.
|
117
|
+
|
118
|
+
binarize: float or None, default=0.0
|
119
|
+
Threshold for binarizing (mapping to booleans) of sample features.
|
120
|
+
If None, input is presumed to already consist of binary vectors.
|
121
|
+
|
122
|
+
fit_prior: bool, default=True
|
123
|
+
Whether to learn class prior probabilities or not.
|
124
|
+
If false, a uniform prior will be used.
|
125
|
+
|
126
|
+
class_prior: array-like of shape (n_classes,), default=None
|
127
|
+
Prior probabilities of the classes. If specified, the priors are not
|
128
|
+
adjusted according to the data.
|
119
129
|
"""
|
120
130
|
|
121
131
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -141,7 +151,7 @@ class BernoulliNB(BaseTransformer):
|
|
141
151
|
self.set_passthrough_cols(passthrough_cols)
|
142
152
|
self.set_drop_input_cols(drop_input_cols)
|
143
153
|
self.set_sample_weight_col(sample_weight_col)
|
144
|
-
deps = set(
|
154
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
145
155
|
|
146
156
|
self._deps = list(deps)
|
147
157
|
|
@@ -154,13 +164,14 @@ class BernoulliNB(BaseTransformer):
|
|
154
164
|
args=init_args,
|
155
165
|
klass=sklearn.naive_bayes.BernoulliNB
|
156
166
|
)
|
157
|
-
self._sklearn_object = sklearn.naive_bayes.BernoulliNB(
|
167
|
+
self._sklearn_object: Any = sklearn.naive_bayes.BernoulliNB(
|
158
168
|
**cleaned_up_init_args,
|
159
169
|
)
|
160
170
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
161
171
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
162
172
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
163
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
173
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
174
|
+
self._autogenerated = True
|
164
175
|
|
165
176
|
def _get_rand_id(self) -> str:
|
166
177
|
"""
|
@@ -216,54 +227,48 @@ class BernoulliNB(BaseTransformer):
|
|
216
227
|
self
|
217
228
|
"""
|
218
229
|
self._infer_input_output_cols(dataset)
|
219
|
-
if isinstance(dataset,
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
self.
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
230
|
+
if isinstance(dataset, DataFrame):
|
231
|
+
session = dataset._session
|
232
|
+
assert session is not None # keep mypy happy
|
233
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
+
|
238
|
+
# Specify input columns so column pruning will be enforced
|
239
|
+
selected_cols = self._get_active_columns()
|
240
|
+
if len(selected_cols) > 0:
|
241
|
+
dataset = dataset.select(selected_cols)
|
242
|
+
|
243
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
+
|
245
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
|
+
if SNOWML_SPROC_ENV in os.environ:
|
247
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
248
|
+
project=_PROJECT,
|
249
|
+
subproject=_SUBPROJECT,
|
250
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BernoulliNB.__class__.__name__),
|
251
|
+
api_calls=[Session.call],
|
252
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
|
+
)
|
254
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
255
|
+
pd_df.columns = dataset.columns
|
256
|
+
dataset = pd_df
|
257
|
+
|
258
|
+
model_trainer = ModelTrainerBuilder.build(
|
259
|
+
estimator=self._sklearn_object,
|
260
|
+
dataset=dataset,
|
261
|
+
input_cols=self.input_cols,
|
262
|
+
label_cols=self.label_cols,
|
263
|
+
sample_weight_col=self.sample_weight_col,
|
264
|
+
autogenerated=self._autogenerated,
|
265
|
+
subproject=_SUBPROJECT
|
266
|
+
)
|
267
|
+
self._sklearn_object = model_trainer.train()
|
235
268
|
self._is_fitted = True
|
236
269
|
self._get_model_signatures(dataset)
|
237
270
|
return self
|
238
271
|
|
239
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
240
|
-
session = dataset._session
|
241
|
-
assert session is not None # keep mypy happy
|
242
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
243
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
244
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
245
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
246
|
-
|
247
|
-
# Specify input columns so column pruning will be enforced
|
248
|
-
selected_cols = self._get_active_columns()
|
249
|
-
if len(selected_cols) > 0:
|
250
|
-
dataset = dataset.select(selected_cols)
|
251
|
-
|
252
|
-
estimator = self._sklearn_object
|
253
|
-
assert estimator is not None # Keep mypy happy
|
254
|
-
|
255
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
256
|
-
|
257
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
258
|
-
dataset,
|
259
|
-
session,
|
260
|
-
estimator,
|
261
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
262
|
-
self.input_cols,
|
263
|
-
self.label_cols,
|
264
|
-
self.sample_weight_col,
|
265
|
-
)
|
266
|
-
|
267
272
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
268
273
|
if self._drop_input_cols:
|
269
274
|
return []
|
@@ -451,11 +456,6 @@ class BernoulliNB(BaseTransformer):
|
|
451
456
|
subproject=_SUBPROJECT,
|
452
457
|
custom_tags=dict([("autogen", True)]),
|
453
458
|
)
|
454
|
-
@telemetry.add_stmt_params_to_df(
|
455
|
-
project=_PROJECT,
|
456
|
-
subproject=_SUBPROJECT,
|
457
|
-
custom_tags=dict([("autogen", True)]),
|
458
|
-
)
|
459
459
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
460
460
|
"""Perform classification on an array of test vectors X
|
461
461
|
For more details on this function, see [sklearn.naive_bayes.BernoulliNB.predict]
|
@@ -509,11 +509,6 @@ class BernoulliNB(BaseTransformer):
|
|
509
509
|
subproject=_SUBPROJECT,
|
510
510
|
custom_tags=dict([("autogen", True)]),
|
511
511
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
512
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
513
|
"""Method not supported for this class.
|
519
514
|
|
@@ -570,7 +565,8 @@ class BernoulliNB(BaseTransformer):
|
|
570
565
|
if False:
|
571
566
|
self.fit(dataset)
|
572
567
|
assert self._sklearn_object is not None
|
573
|
-
|
568
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
569
|
+
return labels
|
574
570
|
else:
|
575
571
|
raise NotImplementedError
|
576
572
|
|
@@ -606,6 +602,7 @@ class BernoulliNB(BaseTransformer):
|
|
606
602
|
output_cols = []
|
607
603
|
|
608
604
|
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
609
606
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
610
607
|
|
611
608
|
return rv
|
@@ -616,11 +613,6 @@ class BernoulliNB(BaseTransformer):
|
|
616
613
|
subproject=_SUBPROJECT,
|
617
614
|
custom_tags=dict([("autogen", True)]),
|
618
615
|
)
|
619
|
-
@telemetry.add_stmt_params_to_df(
|
620
|
-
project=_PROJECT,
|
621
|
-
subproject=_SUBPROJECT,
|
622
|
-
custom_tags=dict([("autogen", True)]),
|
623
|
-
)
|
624
616
|
def predict_proba(
|
625
617
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
626
618
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -663,11 +655,6 @@ class BernoulliNB(BaseTransformer):
|
|
663
655
|
subproject=_SUBPROJECT,
|
664
656
|
custom_tags=dict([("autogen", True)]),
|
665
657
|
)
|
666
|
-
@telemetry.add_stmt_params_to_df(
|
667
|
-
project=_PROJECT,
|
668
|
-
subproject=_SUBPROJECT,
|
669
|
-
custom_tags=dict([("autogen", True)]),
|
670
|
-
)
|
671
658
|
def predict_log_proba(
|
672
659
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
673
660
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -706,16 +693,6 @@ class BernoulliNB(BaseTransformer):
|
|
706
693
|
return output_df
|
707
694
|
|
708
695
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
709
|
-
@telemetry.send_api_usage_telemetry(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
|
-
@telemetry.add_stmt_params_to_df(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
696
|
def decision_function(
|
720
697
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
721
698
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -816,11 +793,6 @@ class BernoulliNB(BaseTransformer):
|
|
816
793
|
subproject=_SUBPROJECT,
|
817
794
|
custom_tags=dict([("autogen", True)]),
|
818
795
|
)
|
819
|
-
@telemetry.add_stmt_params_to_df(
|
820
|
-
project=_PROJECT,
|
821
|
-
subproject=_SUBPROJECT,
|
822
|
-
custom_tags=dict([("autogen", True)]),
|
823
|
-
)
|
824
796
|
def kneighbors(
|
825
797
|
self,
|
826
798
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -880,9 +852,9 @@ class BernoulliNB(BaseTransformer):
|
|
880
852
|
# For classifier, the type of predict is the same as the type of label
|
881
853
|
if self._sklearn_object._estimator_type == 'classifier':
|
882
854
|
# label columns is the desired type for output
|
883
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
855
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
884
856
|
# rename the output columns
|
885
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
857
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
886
858
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
887
859
|
([] if self._drop_input_cols else inputs)
|
888
860
|
+ outputs)
|