snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NearestCentroid(BaseTransformer):
57
58
  r"""Nearest centroid classifier
58
59
  For more details on this class, see [sklearn.neighbors.NearestCentroid]
@@ -60,59 +61,68 @@ class NearestCentroid(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- metric: str or callable, default="euclidean"
64
- Metric to use for distance computation. See the documentation of
65
- `scipy.spatial.distance
66
- <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
67
- the metrics listed in
68
- :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
69
- values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
70
- supported.
71
-
72
- The centroids for the samples corresponding to each class is
73
- the point from which the sum of the distances (according to the metric)
74
- of all samples that belong to that particular class are minimized.
75
- If the `"manhattan"` metric is provided, this centroid is the median
76
- and for all other metrics, the centroid is now set to be the mean.
77
-
78
- shrink_threshold: float, default=None
79
- Threshold for shrinking centroids to remove features.
80
64
 
81
65
  input_cols: Optional[Union[str, List[str]]]
82
66
  A string or list of strings representing column names that contain features.
83
67
  If this parameter is not specified, all columns in the input DataFrame except
84
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
85
- parameters are considered input columns.
86
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
87
72
  label_cols: Optional[Union[str, List[str]]]
88
73
  A string or list of strings representing column names that contain labels.
89
- This is a required param for estimators, as there is no way to infer these
90
- columns. If this parameter is not specified, then object is fitted without
91
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
92
76
 
93
77
  output_cols: Optional[Union[str, List[str]]]
94
78
  A string or list of strings representing column names that will store the
95
79
  output of predict and transform operations. The length of output_cols must
96
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
97
81
  transformer class used.
98
- If this parameter is not specified, output column names are derived by
99
- adding an OUTPUT_ prefix to the label column names. These inferred output
100
- column names work for estimator's predict() method, but output_cols must
101
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
102
91
 
103
92
  sample_weight_col: Optional[str]
104
93
  A string representing the column name containing the sample weights.
105
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
106
97
 
107
98
  passthrough_cols: Optional[Union[str, List[str]]]
108
99
  A string or a list of strings indicating column names to be excluded from any
109
100
  operations (such as train, transform, or inference). These specified column(s)
110
101
  will remain untouched throughout the process. This option is helpful in scenarios
111
102
  requiring automatic input_cols inference, but need to avoid using specific
112
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
113
105
 
114
106
  drop_input_cols: Optional[bool], default=False
115
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ metric: str or callable, default="euclidean"
110
+ Metric to use for distance computation. See the documentation of
111
+ `scipy.spatial.distance
112
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
113
+ the metrics listed in
114
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
115
+ values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
116
+ supported.
117
+
118
+ The centroids for the samples corresponding to each class is
119
+ the point from which the sum of the distances (according to the metric)
120
+ of all samples that belong to that particular class are minimized.
121
+ If the `"manhattan"` metric is provided, this centroid is the median
122
+ and for all other metrics, the centroid is now set to be the mean.
123
+
124
+ shrink_threshold: float, default=None
125
+ Threshold for shrinking centroids to remove features.
116
126
  """
117
127
 
118
128
  def __init__( # type: ignore[no-untyped-def]
@@ -135,7 +145,7 @@ class NearestCentroid(BaseTransformer):
135
145
  self.set_passthrough_cols(passthrough_cols)
136
146
  self.set_drop_input_cols(drop_input_cols)
137
147
  self.set_sample_weight_col(sample_weight_col)
138
- deps = set(SklearnWrapperProvider().dependencies)
148
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
139
149
 
140
150
  self._deps = list(deps)
141
151
 
@@ -145,13 +155,14 @@ class NearestCentroid(BaseTransformer):
145
155
  args=init_args,
146
156
  klass=sklearn.neighbors.NearestCentroid
147
157
  )
148
- self._sklearn_object = sklearn.neighbors.NearestCentroid(
158
+ self._sklearn_object: Any = sklearn.neighbors.NearestCentroid(
149
159
  **cleaned_up_init_args,
150
160
  )
151
161
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
152
162
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
153
163
  self._snowpark_cols: Optional[List[str]] = self.input_cols
154
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
164
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
165
+ self._autogenerated = True
155
166
 
156
167
  def _get_rand_id(self) -> str:
157
168
  """
@@ -207,54 +218,48 @@ class NearestCentroid(BaseTransformer):
207
218
  self
208
219
  """
209
220
  self._infer_input_output_cols(dataset)
210
- if isinstance(dataset, pd.DataFrame):
211
- assert self._sklearn_object is not None # keep mypy happy
212
- self._sklearn_object = self._handlers.fit_pandas(
213
- dataset,
214
- self._sklearn_object,
215
- self.input_cols,
216
- self.label_cols,
217
- self.sample_weight_col
218
- )
219
- elif isinstance(dataset, DataFrame):
220
- self._fit_snowpark(dataset)
221
- else:
222
- raise TypeError(
223
- f"Unexpected dataset type: {type(dataset)}."
224
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
225
- )
221
+ if isinstance(dataset, DataFrame):
222
+ session = dataset._session
223
+ assert session is not None # keep mypy happy
224
+ # Validate that key package version in user workspace are supported in snowflake conda channel
225
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
226
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
227
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
228
+
229
+ # Specify input columns so column pruning will be enforced
230
+ selected_cols = self._get_active_columns()
231
+ if len(selected_cols) > 0:
232
+ dataset = dataset.select(selected_cols)
233
+
234
+ self._snowpark_cols = dataset.select(self.input_cols).columns
235
+
236
+ # If we are already in a stored procedure, no need to kick off another one.
237
+ if SNOWML_SPROC_ENV in os.environ:
238
+ statement_params = telemetry.get_function_usage_statement_params(
239
+ project=_PROJECT,
240
+ subproject=_SUBPROJECT,
241
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
242
+ api_calls=[Session.call],
243
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
244
+ )
245
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
246
+ pd_df.columns = dataset.columns
247
+ dataset = pd_df
248
+
249
+ model_trainer = ModelTrainerBuilder.build(
250
+ estimator=self._sklearn_object,
251
+ dataset=dataset,
252
+ input_cols=self.input_cols,
253
+ label_cols=self.label_cols,
254
+ sample_weight_col=self.sample_weight_col,
255
+ autogenerated=self._autogenerated,
256
+ subproject=_SUBPROJECT
257
+ )
258
+ self._sklearn_object = model_trainer.train()
226
259
  self._is_fitted = True
227
260
  self._get_model_signatures(dataset)
228
261
  return self
229
262
 
230
- def _fit_snowpark(self, dataset: DataFrame) -> None:
231
- session = dataset._session
232
- assert session is not None # keep mypy happy
233
- # Validate that key package version in user workspace are supported in snowflake conda channel
234
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
235
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
236
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
237
-
238
- # Specify input columns so column pruning will be enforced
239
- selected_cols = self._get_active_columns()
240
- if len(selected_cols) > 0:
241
- dataset = dataset.select(selected_cols)
242
-
243
- estimator = self._sklearn_object
244
- assert estimator is not None # Keep mypy happy
245
-
246
- self._snowpark_cols = dataset.select(self.input_cols).columns
247
-
248
- self._sklearn_object = self._handlers.fit_snowpark(
249
- dataset,
250
- session,
251
- estimator,
252
- ["snowflake-snowpark-python"] + self._get_dependencies(),
253
- self.input_cols,
254
- self.label_cols,
255
- self.sample_weight_col,
256
- )
257
-
258
263
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
259
264
  if self._drop_input_cols:
260
265
  return []
@@ -442,11 +447,6 @@ class NearestCentroid(BaseTransformer):
442
447
  subproject=_SUBPROJECT,
443
448
  custom_tags=dict([("autogen", True)]),
444
449
  )
445
- @telemetry.add_stmt_params_to_df(
446
- project=_PROJECT,
447
- subproject=_SUBPROJECT,
448
- custom_tags=dict([("autogen", True)]),
449
- )
450
450
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
451
451
  """Perform classification on an array of test vectors `X`
452
452
  For more details on this function, see [sklearn.neighbors.NearestCentroid.predict]
@@ -500,11 +500,6 @@ class NearestCentroid(BaseTransformer):
500
500
  subproject=_SUBPROJECT,
501
501
  custom_tags=dict([("autogen", True)]),
502
502
  )
503
- @telemetry.add_stmt_params_to_df(
504
- project=_PROJECT,
505
- subproject=_SUBPROJECT,
506
- custom_tags=dict([("autogen", True)]),
507
- )
508
503
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
509
504
  """Method not supported for this class.
510
505
 
@@ -561,7 +556,8 @@ class NearestCentroid(BaseTransformer):
561
556
  if False:
562
557
  self.fit(dataset)
563
558
  assert self._sklearn_object is not None
564
- return self._sklearn_object.labels_
559
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
560
+ return labels
565
561
  else:
566
562
  raise NotImplementedError
567
563
 
@@ -597,6 +593,7 @@ class NearestCentroid(BaseTransformer):
597
593
  output_cols = []
598
594
 
599
595
  # Make sure column names are valid snowflake identifiers.
596
+ assert output_cols is not None # Make MyPy happy
600
597
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
601
598
 
602
599
  return rv
@@ -607,11 +604,6 @@ class NearestCentroid(BaseTransformer):
607
604
  subproject=_SUBPROJECT,
608
605
  custom_tags=dict([("autogen", True)]),
609
606
  )
610
- @telemetry.add_stmt_params_to_df(
611
- project=_PROJECT,
612
- subproject=_SUBPROJECT,
613
- custom_tags=dict([("autogen", True)]),
614
- )
615
607
  def predict_proba(
616
608
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
617
609
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -652,11 +644,6 @@ class NearestCentroid(BaseTransformer):
652
644
  subproject=_SUBPROJECT,
653
645
  custom_tags=dict([("autogen", True)]),
654
646
  )
655
- @telemetry.add_stmt_params_to_df(
656
- project=_PROJECT,
657
- subproject=_SUBPROJECT,
658
- custom_tags=dict([("autogen", True)]),
659
- )
660
647
  def predict_log_proba(
661
648
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
662
649
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -693,16 +680,6 @@ class NearestCentroid(BaseTransformer):
693
680
  return output_df
694
681
 
695
682
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
696
- @telemetry.send_api_usage_telemetry(
697
- project=_PROJECT,
698
- subproject=_SUBPROJECT,
699
- custom_tags=dict([("autogen", True)]),
700
- )
701
- @telemetry.add_stmt_params_to_df(
702
- project=_PROJECT,
703
- subproject=_SUBPROJECT,
704
- custom_tags=dict([("autogen", True)]),
705
- )
706
683
  def decision_function(
707
684
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
708
685
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -803,11 +780,6 @@ class NearestCentroid(BaseTransformer):
803
780
  subproject=_SUBPROJECT,
804
781
  custom_tags=dict([("autogen", True)]),
805
782
  )
806
- @telemetry.add_stmt_params_to_df(
807
- project=_PROJECT,
808
- subproject=_SUBPROJECT,
809
- custom_tags=dict([("autogen", True)]),
810
- )
811
783
  def kneighbors(
812
784
  self,
813
785
  dataset: Union[DataFrame, pd.DataFrame],
@@ -867,9 +839,9 @@ class NearestCentroid(BaseTransformer):
867
839
  # For classifier, the type of predict is the same as the type of label
868
840
  if self._sklearn_object._estimator_type == 'classifier':
869
841
  # label columns is the desired type for output
870
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
842
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
871
843
  # rename the output columns
872
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
844
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
873
845
  self._model_signature_dict["predict"] = ModelSignature(inputs,
874
846
  ([] if self._drop_input_cols else inputs)
875
847
  + outputs)