snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NearestCentroid(BaseTransformer):
|
57
58
|
r"""Nearest centroid classifier
|
58
59
|
For more details on this class, see [sklearn.neighbors.NearestCentroid]
|
@@ -60,59 +61,68 @@ class NearestCentroid(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
metric: str or callable, default="euclidean"
|
64
|
-
Metric to use for distance computation. See the documentation of
|
65
|
-
`scipy.spatial.distance
|
66
|
-
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
67
|
-
the metrics listed in
|
68
|
-
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
69
|
-
values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
|
70
|
-
supported.
|
71
|
-
|
72
|
-
The centroids for the samples corresponding to each class is
|
73
|
-
the point from which the sum of the distances (according to the metric)
|
74
|
-
of all samples that belong to that particular class are minimized.
|
75
|
-
If the `"manhattan"` metric is provided, this centroid is the median
|
76
|
-
and for all other metrics, the centroid is now set to be the mean.
|
77
|
-
|
78
|
-
shrink_threshold: float, default=None
|
79
|
-
Threshold for shrinking centroids to remove features.
|
80
64
|
|
81
65
|
input_cols: Optional[Union[str, List[str]]]
|
82
66
|
A string or list of strings representing column names that contain features.
|
83
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
84
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
85
|
-
parameters are considered input columns.
|
86
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
87
72
|
label_cols: Optional[Union[str, List[str]]]
|
88
73
|
A string or list of strings representing column names that contain labels.
|
89
|
-
|
90
|
-
|
91
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
92
76
|
|
93
77
|
output_cols: Optional[Union[str, List[str]]]
|
94
78
|
A string or list of strings representing column names that will store the
|
95
79
|
output of predict and transform operations. The length of output_cols must
|
96
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
97
81
|
transformer class used.
|
98
|
-
If this parameter
|
99
|
-
|
100
|
-
|
101
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
102
91
|
|
103
92
|
sample_weight_col: Optional[str]
|
104
93
|
A string representing the column name containing the sample weights.
|
105
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
106
97
|
|
107
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
108
99
|
A string or a list of strings indicating column names to be excluded from any
|
109
100
|
operations (such as train, transform, or inference). These specified column(s)
|
110
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
111
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
112
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
113
105
|
|
114
106
|
drop_input_cols: Optional[bool], default=False
|
115
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
metric: str or callable, default="euclidean"
|
110
|
+
Metric to use for distance computation. See the documentation of
|
111
|
+
`scipy.spatial.distance
|
112
|
+
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
113
|
+
the metrics listed in
|
114
|
+
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
115
|
+
values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
|
116
|
+
supported.
|
117
|
+
|
118
|
+
The centroids for the samples corresponding to each class is
|
119
|
+
the point from which the sum of the distances (according to the metric)
|
120
|
+
of all samples that belong to that particular class are minimized.
|
121
|
+
If the `"manhattan"` metric is provided, this centroid is the median
|
122
|
+
and for all other metrics, the centroid is now set to be the mean.
|
123
|
+
|
124
|
+
shrink_threshold: float, default=None
|
125
|
+
Threshold for shrinking centroids to remove features.
|
116
126
|
"""
|
117
127
|
|
118
128
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -135,7 +145,7 @@ class NearestCentroid(BaseTransformer):
|
|
135
145
|
self.set_passthrough_cols(passthrough_cols)
|
136
146
|
self.set_drop_input_cols(drop_input_cols)
|
137
147
|
self.set_sample_weight_col(sample_weight_col)
|
138
|
-
deps = set(
|
148
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
139
149
|
|
140
150
|
self._deps = list(deps)
|
141
151
|
|
@@ -145,13 +155,14 @@ class NearestCentroid(BaseTransformer):
|
|
145
155
|
args=init_args,
|
146
156
|
klass=sklearn.neighbors.NearestCentroid
|
147
157
|
)
|
148
|
-
self._sklearn_object = sklearn.neighbors.NearestCentroid(
|
158
|
+
self._sklearn_object: Any = sklearn.neighbors.NearestCentroid(
|
149
159
|
**cleaned_up_init_args,
|
150
160
|
)
|
151
161
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
152
162
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
153
163
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
154
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
164
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestCentroid.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
165
|
+
self._autogenerated = True
|
155
166
|
|
156
167
|
def _get_rand_id(self) -> str:
|
157
168
|
"""
|
@@ -207,54 +218,48 @@ class NearestCentroid(BaseTransformer):
|
|
207
218
|
self
|
208
219
|
"""
|
209
220
|
self._infer_input_output_cols(dataset)
|
210
|
-
if isinstance(dataset,
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
self.
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
221
|
+
if isinstance(dataset, DataFrame):
|
222
|
+
session = dataset._session
|
223
|
+
assert session is not None # keep mypy happy
|
224
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
225
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
226
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
227
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
228
|
+
|
229
|
+
# Specify input columns so column pruning will be enforced
|
230
|
+
selected_cols = self._get_active_columns()
|
231
|
+
if len(selected_cols) > 0:
|
232
|
+
dataset = dataset.select(selected_cols)
|
233
|
+
|
234
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
235
|
+
|
236
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
237
|
+
if SNOWML_SPROC_ENV in os.environ:
|
238
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
239
|
+
project=_PROJECT,
|
240
|
+
subproject=_SUBPROJECT,
|
241
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
|
242
|
+
api_calls=[Session.call],
|
243
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
244
|
+
)
|
245
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
246
|
+
pd_df.columns = dataset.columns
|
247
|
+
dataset = pd_df
|
248
|
+
|
249
|
+
model_trainer = ModelTrainerBuilder.build(
|
250
|
+
estimator=self._sklearn_object,
|
251
|
+
dataset=dataset,
|
252
|
+
input_cols=self.input_cols,
|
253
|
+
label_cols=self.label_cols,
|
254
|
+
sample_weight_col=self.sample_weight_col,
|
255
|
+
autogenerated=self._autogenerated,
|
256
|
+
subproject=_SUBPROJECT
|
257
|
+
)
|
258
|
+
self._sklearn_object = model_trainer.train()
|
226
259
|
self._is_fitted = True
|
227
260
|
self._get_model_signatures(dataset)
|
228
261
|
return self
|
229
262
|
|
230
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
231
|
-
session = dataset._session
|
232
|
-
assert session is not None # keep mypy happy
|
233
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
-
|
238
|
-
# Specify input columns so column pruning will be enforced
|
239
|
-
selected_cols = self._get_active_columns()
|
240
|
-
if len(selected_cols) > 0:
|
241
|
-
dataset = dataset.select(selected_cols)
|
242
|
-
|
243
|
-
estimator = self._sklearn_object
|
244
|
-
assert estimator is not None # Keep mypy happy
|
245
|
-
|
246
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
247
|
-
|
248
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
249
|
-
dataset,
|
250
|
-
session,
|
251
|
-
estimator,
|
252
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
253
|
-
self.input_cols,
|
254
|
-
self.label_cols,
|
255
|
-
self.sample_weight_col,
|
256
|
-
)
|
257
|
-
|
258
263
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
259
264
|
if self._drop_input_cols:
|
260
265
|
return []
|
@@ -442,11 +447,6 @@ class NearestCentroid(BaseTransformer):
|
|
442
447
|
subproject=_SUBPROJECT,
|
443
448
|
custom_tags=dict([("autogen", True)]),
|
444
449
|
)
|
445
|
-
@telemetry.add_stmt_params_to_df(
|
446
|
-
project=_PROJECT,
|
447
|
-
subproject=_SUBPROJECT,
|
448
|
-
custom_tags=dict([("autogen", True)]),
|
449
|
-
)
|
450
450
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
451
451
|
"""Perform classification on an array of test vectors `X`
|
452
452
|
For more details on this function, see [sklearn.neighbors.NearestCentroid.predict]
|
@@ -500,11 +500,6 @@ class NearestCentroid(BaseTransformer):
|
|
500
500
|
subproject=_SUBPROJECT,
|
501
501
|
custom_tags=dict([("autogen", True)]),
|
502
502
|
)
|
503
|
-
@telemetry.add_stmt_params_to_df(
|
504
|
-
project=_PROJECT,
|
505
|
-
subproject=_SUBPROJECT,
|
506
|
-
custom_tags=dict([("autogen", True)]),
|
507
|
-
)
|
508
503
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
509
504
|
"""Method not supported for this class.
|
510
505
|
|
@@ -561,7 +556,8 @@ class NearestCentroid(BaseTransformer):
|
|
561
556
|
if False:
|
562
557
|
self.fit(dataset)
|
563
558
|
assert self._sklearn_object is not None
|
564
|
-
|
559
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
560
|
+
return labels
|
565
561
|
else:
|
566
562
|
raise NotImplementedError
|
567
563
|
|
@@ -597,6 +593,7 @@ class NearestCentroid(BaseTransformer):
|
|
597
593
|
output_cols = []
|
598
594
|
|
599
595
|
# Make sure column names are valid snowflake identifiers.
|
596
|
+
assert output_cols is not None # Make MyPy happy
|
600
597
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
601
598
|
|
602
599
|
return rv
|
@@ -607,11 +604,6 @@ class NearestCentroid(BaseTransformer):
|
|
607
604
|
subproject=_SUBPROJECT,
|
608
605
|
custom_tags=dict([("autogen", True)]),
|
609
606
|
)
|
610
|
-
@telemetry.add_stmt_params_to_df(
|
611
|
-
project=_PROJECT,
|
612
|
-
subproject=_SUBPROJECT,
|
613
|
-
custom_tags=dict([("autogen", True)]),
|
614
|
-
)
|
615
607
|
def predict_proba(
|
616
608
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
617
609
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -652,11 +644,6 @@ class NearestCentroid(BaseTransformer):
|
|
652
644
|
subproject=_SUBPROJECT,
|
653
645
|
custom_tags=dict([("autogen", True)]),
|
654
646
|
)
|
655
|
-
@telemetry.add_stmt_params_to_df(
|
656
|
-
project=_PROJECT,
|
657
|
-
subproject=_SUBPROJECT,
|
658
|
-
custom_tags=dict([("autogen", True)]),
|
659
|
-
)
|
660
647
|
def predict_log_proba(
|
661
648
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
662
649
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -693,16 +680,6 @@ class NearestCentroid(BaseTransformer):
|
|
693
680
|
return output_df
|
694
681
|
|
695
682
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
696
|
-
@telemetry.send_api_usage_telemetry(
|
697
|
-
project=_PROJECT,
|
698
|
-
subproject=_SUBPROJECT,
|
699
|
-
custom_tags=dict([("autogen", True)]),
|
700
|
-
)
|
701
|
-
@telemetry.add_stmt_params_to_df(
|
702
|
-
project=_PROJECT,
|
703
|
-
subproject=_SUBPROJECT,
|
704
|
-
custom_tags=dict([("autogen", True)]),
|
705
|
-
)
|
706
683
|
def decision_function(
|
707
684
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
708
685
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -803,11 +780,6 @@ class NearestCentroid(BaseTransformer):
|
|
803
780
|
subproject=_SUBPROJECT,
|
804
781
|
custom_tags=dict([("autogen", True)]),
|
805
782
|
)
|
806
|
-
@telemetry.add_stmt_params_to_df(
|
807
|
-
project=_PROJECT,
|
808
|
-
subproject=_SUBPROJECT,
|
809
|
-
custom_tags=dict([("autogen", True)]),
|
810
|
-
)
|
811
783
|
def kneighbors(
|
812
784
|
self,
|
813
785
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -867,9 +839,9 @@ class NearestCentroid(BaseTransformer):
|
|
867
839
|
# For classifier, the type of predict is the same as the type of label
|
868
840
|
if self._sklearn_object._estimator_type == 'classifier':
|
869
841
|
# label columns is the desired type for output
|
870
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
842
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
871
843
|
# rename the output columns
|
872
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
844
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
873
845
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
874
846
|
([] if self._drop_input_cols else inputs)
|
875
847
|
+ outputs)
|