snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NeighborhoodComponentsAnalysis(BaseTransformer):
|
57
58
|
r"""Neighborhood Components Analysis
|
58
59
|
For more details on this class, see [sklearn.neighbors.NeighborhoodComponentsAnalysis]
|
@@ -60,6 +61,51 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_components: int, default=None
|
64
110
|
Preferred dimensionality of the projected space.
|
65
111
|
If None it will be set to `n_features`.
|
@@ -136,42 +182,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
136
182
|
argument to PCA when initializing the transformation. Pass an int
|
137
183
|
for reproducible results across multiple function calls.
|
138
184
|
See :term:`Glossary <random_state>`.
|
139
|
-
|
140
|
-
input_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain features.
|
142
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
143
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
144
|
-
parameters are considered input columns.
|
145
|
-
|
146
|
-
label_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that contain labels.
|
148
|
-
This is a required param for estimators, as there is no way to infer these
|
149
|
-
columns. If this parameter is not specified, then object is fitted without
|
150
|
-
labels (like a transformer).
|
151
|
-
|
152
|
-
output_cols: Optional[Union[str, List[str]]]
|
153
|
-
A string or list of strings representing column names that will store the
|
154
|
-
output of predict and transform operations. The length of output_cols must
|
155
|
-
match the expected number of output columns from the specific estimator or
|
156
|
-
transformer class used.
|
157
|
-
If this parameter is not specified, output column names are derived by
|
158
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
159
|
-
column names work for estimator's predict() method, but output_cols must
|
160
|
-
be set explicitly for transformers.
|
161
|
-
|
162
|
-
sample_weight_col: Optional[str]
|
163
|
-
A string representing the column name containing the sample weights.
|
164
|
-
This argument is only required when working with weighted datasets.
|
165
|
-
|
166
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or a list of strings indicating column names to be excluded from any
|
168
|
-
operations (such as train, transform, or inference). These specified column(s)
|
169
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
170
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
171
|
-
columns, like index columns, during training or inference.
|
172
|
-
|
173
|
-
drop_input_cols: Optional[bool], default=False
|
174
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
175
185
|
"""
|
176
186
|
|
177
187
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -200,7 +210,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
200
210
|
self.set_passthrough_cols(passthrough_cols)
|
201
211
|
self.set_drop_input_cols(drop_input_cols)
|
202
212
|
self.set_sample_weight_col(sample_weight_col)
|
203
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
204
214
|
|
205
215
|
self._deps = list(deps)
|
206
216
|
|
@@ -216,13 +226,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
216
226
|
args=init_args,
|
217
227
|
klass=sklearn.neighbors.NeighborhoodComponentsAnalysis
|
218
228
|
)
|
219
|
-
self._sklearn_object = sklearn.neighbors.NeighborhoodComponentsAnalysis(
|
229
|
+
self._sklearn_object: Any = sklearn.neighbors.NeighborhoodComponentsAnalysis(
|
220
230
|
**cleaned_up_init_args,
|
221
231
|
)
|
222
232
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
223
233
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
224
234
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
225
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
235
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NeighborhoodComponentsAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
236
|
+
self._autogenerated = True
|
226
237
|
|
227
238
|
def _get_rand_id(self) -> str:
|
228
239
|
"""
|
@@ -278,54 +289,48 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
278
289
|
self
|
279
290
|
"""
|
280
291
|
self._infer_input_output_cols(dataset)
|
281
|
-
if isinstance(dataset,
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
self.
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
292
|
+
if isinstance(dataset, DataFrame):
|
293
|
+
session = dataset._session
|
294
|
+
assert session is not None # keep mypy happy
|
295
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
296
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
297
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
298
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
299
|
+
|
300
|
+
# Specify input columns so column pruning will be enforced
|
301
|
+
selected_cols = self._get_active_columns()
|
302
|
+
if len(selected_cols) > 0:
|
303
|
+
dataset = dataset.select(selected_cols)
|
304
|
+
|
305
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
306
|
+
|
307
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
308
|
+
if SNOWML_SPROC_ENV in os.environ:
|
309
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
310
|
+
project=_PROJECT,
|
311
|
+
subproject=_SUBPROJECT,
|
312
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NeighborhoodComponentsAnalysis.__class__.__name__),
|
313
|
+
api_calls=[Session.call],
|
314
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
315
|
+
)
|
316
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
|
+
pd_df.columns = dataset.columns
|
318
|
+
dataset = pd_df
|
319
|
+
|
320
|
+
model_trainer = ModelTrainerBuilder.build(
|
321
|
+
estimator=self._sklearn_object,
|
322
|
+
dataset=dataset,
|
323
|
+
input_cols=self.input_cols,
|
324
|
+
label_cols=self.label_cols,
|
325
|
+
sample_weight_col=self.sample_weight_col,
|
326
|
+
autogenerated=self._autogenerated,
|
327
|
+
subproject=_SUBPROJECT
|
328
|
+
)
|
329
|
+
self._sklearn_object = model_trainer.train()
|
297
330
|
self._is_fitted = True
|
298
331
|
self._get_model_signatures(dataset)
|
299
332
|
return self
|
300
333
|
|
301
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
302
|
-
session = dataset._session
|
303
|
-
assert session is not None # keep mypy happy
|
304
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
305
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
306
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
307
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
308
|
-
|
309
|
-
# Specify input columns so column pruning will be enforced
|
310
|
-
selected_cols = self._get_active_columns()
|
311
|
-
if len(selected_cols) > 0:
|
312
|
-
dataset = dataset.select(selected_cols)
|
313
|
-
|
314
|
-
estimator = self._sklearn_object
|
315
|
-
assert estimator is not None # Keep mypy happy
|
316
|
-
|
317
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
318
|
-
|
319
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
320
|
-
dataset,
|
321
|
-
session,
|
322
|
-
estimator,
|
323
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
324
|
-
self.input_cols,
|
325
|
-
self.label_cols,
|
326
|
-
self.sample_weight_col,
|
327
|
-
)
|
328
|
-
|
329
334
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
330
335
|
if self._drop_input_cols:
|
331
336
|
return []
|
@@ -513,11 +518,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
513
518
|
subproject=_SUBPROJECT,
|
514
519
|
custom_tags=dict([("autogen", True)]),
|
515
520
|
)
|
516
|
-
@telemetry.add_stmt_params_to_df(
|
517
|
-
project=_PROJECT,
|
518
|
-
subproject=_SUBPROJECT,
|
519
|
-
custom_tags=dict([("autogen", True)]),
|
520
|
-
)
|
521
521
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
522
522
|
"""Method not supported for this class.
|
523
523
|
|
@@ -569,11 +569,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
569
569
|
subproject=_SUBPROJECT,
|
570
570
|
custom_tags=dict([("autogen", True)]),
|
571
571
|
)
|
572
|
-
@telemetry.add_stmt_params_to_df(
|
573
|
-
project=_PROJECT,
|
574
|
-
subproject=_SUBPROJECT,
|
575
|
-
custom_tags=dict([("autogen", True)]),
|
576
|
-
)
|
577
572
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
578
573
|
"""Apply the learned transformation to the given data
|
579
574
|
For more details on this function, see [sklearn.neighbors.NeighborhoodComponentsAnalysis.transform]
|
@@ -632,7 +627,8 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
632
627
|
if False:
|
633
628
|
self.fit(dataset)
|
634
629
|
assert self._sklearn_object is not None
|
635
|
-
|
630
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
631
|
+
return labels
|
636
632
|
else:
|
637
633
|
raise NotImplementedError
|
638
634
|
|
@@ -668,6 +664,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
668
664
|
output_cols = []
|
669
665
|
|
670
666
|
# Make sure column names are valid snowflake identifiers.
|
667
|
+
assert output_cols is not None # Make MyPy happy
|
671
668
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
672
669
|
|
673
670
|
return rv
|
@@ -678,11 +675,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
678
675
|
subproject=_SUBPROJECT,
|
679
676
|
custom_tags=dict([("autogen", True)]),
|
680
677
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
678
|
def predict_proba(
|
687
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
688
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -723,11 +715,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
723
715
|
subproject=_SUBPROJECT,
|
724
716
|
custom_tags=dict([("autogen", True)]),
|
725
717
|
)
|
726
|
-
@telemetry.add_stmt_params_to_df(
|
727
|
-
project=_PROJECT,
|
728
|
-
subproject=_SUBPROJECT,
|
729
|
-
custom_tags=dict([("autogen", True)]),
|
730
|
-
)
|
731
718
|
def predict_log_proba(
|
732
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
733
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -764,16 +751,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
764
751
|
return output_df
|
765
752
|
|
766
753
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
767
|
-
@telemetry.send_api_usage_telemetry(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
|
-
@telemetry.add_stmt_params_to_df(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
754
|
def decision_function(
|
778
755
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
779
756
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -872,11 +849,6 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
872
849
|
subproject=_SUBPROJECT,
|
873
850
|
custom_tags=dict([("autogen", True)]),
|
874
851
|
)
|
875
|
-
@telemetry.add_stmt_params_to_df(
|
876
|
-
project=_PROJECT,
|
877
|
-
subproject=_SUBPROJECT,
|
878
|
-
custom_tags=dict([("autogen", True)]),
|
879
|
-
)
|
880
852
|
def kneighbors(
|
881
853
|
self,
|
882
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -936,9 +908,9 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
936
908
|
# For classifier, the type of predict is the same as the type of label
|
937
909
|
if self._sklearn_object._estimator_type == 'classifier':
|
938
910
|
# label columns is the desired type for output
|
939
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
911
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
940
912
|
# rename the output columns
|
941
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
913
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
942
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
943
915
|
([] if self._drop_input_cols else inputs)
|
944
916
|
+ outputs)
|