snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GradientBoostingRegressor(BaseTransformer):
|
57
58
|
r"""Gradient Boosting for regression
|
58
59
|
For more details on this class, see [sklearn.ensemble.GradientBoostingRegressor]
|
@@ -60,6 +61,51 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'squared_error', 'absolute_error', 'huber', 'quantile'}, default='squared_error'
|
64
110
|
Loss function to be optimized. 'squared_error' refers to the squared
|
65
111
|
error for regression. 'absolute_error' refers to the absolute error of
|
@@ -226,42 +272,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
226
272
|
``ccp_alpha`` will be chosen. By default, no pruning is performed.
|
227
273
|
Values must be in the range `[0.0, inf)`.
|
228
274
|
See :ref:`minimal_cost_complexity_pruning` for details.
|
229
|
-
|
230
|
-
input_cols: Optional[Union[str, List[str]]]
|
231
|
-
A string or list of strings representing column names that contain features.
|
232
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
233
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
234
|
-
parameters are considered input columns.
|
235
|
-
|
236
|
-
label_cols: Optional[Union[str, List[str]]]
|
237
|
-
A string or list of strings representing column names that contain labels.
|
238
|
-
This is a required param for estimators, as there is no way to infer these
|
239
|
-
columns. If this parameter is not specified, then object is fitted without
|
240
|
-
labels (like a transformer).
|
241
|
-
|
242
|
-
output_cols: Optional[Union[str, List[str]]]
|
243
|
-
A string or list of strings representing column names that will store the
|
244
|
-
output of predict and transform operations. The length of output_cols must
|
245
|
-
match the expected number of output columns from the specific estimator or
|
246
|
-
transformer class used.
|
247
|
-
If this parameter is not specified, output column names are derived by
|
248
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
249
|
-
column names work for estimator's predict() method, but output_cols must
|
250
|
-
be set explicitly for transformers.
|
251
|
-
|
252
|
-
sample_weight_col: Optional[str]
|
253
|
-
A string representing the column name containing the sample weights.
|
254
|
-
This argument is only required when working with weighted datasets.
|
255
|
-
|
256
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
257
|
-
A string or a list of strings indicating column names to be excluded from any
|
258
|
-
operations (such as train, transform, or inference). These specified column(s)
|
259
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
260
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
261
|
-
columns, like index columns, during training or inference.
|
262
|
-
|
263
|
-
drop_input_cols: Optional[bool], default=False
|
264
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
265
275
|
"""
|
266
276
|
|
267
277
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -303,7 +313,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
303
313
|
self.set_passthrough_cols(passthrough_cols)
|
304
314
|
self.set_drop_input_cols(drop_input_cols)
|
305
315
|
self.set_sample_weight_col(sample_weight_col)
|
306
|
-
deps = set(
|
316
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
307
317
|
|
308
318
|
self._deps = list(deps)
|
309
319
|
|
@@ -332,13 +342,14 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
332
342
|
args=init_args,
|
333
343
|
klass=sklearn.ensemble.GradientBoostingRegressor
|
334
344
|
)
|
335
|
-
self._sklearn_object = sklearn.ensemble.GradientBoostingRegressor(
|
345
|
+
self._sklearn_object: Any = sklearn.ensemble.GradientBoostingRegressor(
|
336
346
|
**cleaned_up_init_args,
|
337
347
|
)
|
338
348
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
339
349
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
340
350
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
341
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
351
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
352
|
+
self._autogenerated = True
|
342
353
|
|
343
354
|
def _get_rand_id(self) -> str:
|
344
355
|
"""
|
@@ -394,54 +405,48 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
394
405
|
self
|
395
406
|
"""
|
396
407
|
self._infer_input_output_cols(dataset)
|
397
|
-
if isinstance(dataset,
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
self.
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
408
|
+
if isinstance(dataset, DataFrame):
|
409
|
+
session = dataset._session
|
410
|
+
assert session is not None # keep mypy happy
|
411
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
412
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
413
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
414
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
415
|
+
|
416
|
+
# Specify input columns so column pruning will be enforced
|
417
|
+
selected_cols = self._get_active_columns()
|
418
|
+
if len(selected_cols) > 0:
|
419
|
+
dataset = dataset.select(selected_cols)
|
420
|
+
|
421
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
422
|
+
|
423
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
424
|
+
if SNOWML_SPROC_ENV in os.environ:
|
425
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
426
|
+
project=_PROJECT,
|
427
|
+
subproject=_SUBPROJECT,
|
428
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingRegressor.__class__.__name__),
|
429
|
+
api_calls=[Session.call],
|
430
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
431
|
+
)
|
432
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
433
|
+
pd_df.columns = dataset.columns
|
434
|
+
dataset = pd_df
|
435
|
+
|
436
|
+
model_trainer = ModelTrainerBuilder.build(
|
437
|
+
estimator=self._sklearn_object,
|
438
|
+
dataset=dataset,
|
439
|
+
input_cols=self.input_cols,
|
440
|
+
label_cols=self.label_cols,
|
441
|
+
sample_weight_col=self.sample_weight_col,
|
442
|
+
autogenerated=self._autogenerated,
|
443
|
+
subproject=_SUBPROJECT
|
444
|
+
)
|
445
|
+
self._sklearn_object = model_trainer.train()
|
413
446
|
self._is_fitted = True
|
414
447
|
self._get_model_signatures(dataset)
|
415
448
|
return self
|
416
449
|
|
417
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
418
|
-
session = dataset._session
|
419
|
-
assert session is not None # keep mypy happy
|
420
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
421
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
422
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
423
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
424
|
-
|
425
|
-
# Specify input columns so column pruning will be enforced
|
426
|
-
selected_cols = self._get_active_columns()
|
427
|
-
if len(selected_cols) > 0:
|
428
|
-
dataset = dataset.select(selected_cols)
|
429
|
-
|
430
|
-
estimator = self._sklearn_object
|
431
|
-
assert estimator is not None # Keep mypy happy
|
432
|
-
|
433
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
434
|
-
|
435
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
436
|
-
dataset,
|
437
|
-
session,
|
438
|
-
estimator,
|
439
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
440
|
-
self.input_cols,
|
441
|
-
self.label_cols,
|
442
|
-
self.sample_weight_col,
|
443
|
-
)
|
444
|
-
|
445
450
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
446
451
|
if self._drop_input_cols:
|
447
452
|
return []
|
@@ -629,11 +634,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
629
634
|
subproject=_SUBPROJECT,
|
630
635
|
custom_tags=dict([("autogen", True)]),
|
631
636
|
)
|
632
|
-
@telemetry.add_stmt_params_to_df(
|
633
|
-
project=_PROJECT,
|
634
|
-
subproject=_SUBPROJECT,
|
635
|
-
custom_tags=dict([("autogen", True)]),
|
636
|
-
)
|
637
637
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
638
638
|
"""Predict regression target for X
|
639
639
|
For more details on this function, see [sklearn.ensemble.GradientBoostingRegressor.predict]
|
@@ -687,11 +687,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
687
687
|
subproject=_SUBPROJECT,
|
688
688
|
custom_tags=dict([("autogen", True)]),
|
689
689
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
690
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
696
691
|
"""Method not supported for this class.
|
697
692
|
|
@@ -748,7 +743,8 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
748
743
|
if False:
|
749
744
|
self.fit(dataset)
|
750
745
|
assert self._sklearn_object is not None
|
751
|
-
|
746
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
747
|
+
return labels
|
752
748
|
else:
|
753
749
|
raise NotImplementedError
|
754
750
|
|
@@ -784,6 +780,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
784
780
|
output_cols = []
|
785
781
|
|
786
782
|
# Make sure column names are valid snowflake identifiers.
|
783
|
+
assert output_cols is not None # Make MyPy happy
|
787
784
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
788
785
|
|
789
786
|
return rv
|
@@ -794,11 +791,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
794
791
|
subproject=_SUBPROJECT,
|
795
792
|
custom_tags=dict([("autogen", True)]),
|
796
793
|
)
|
797
|
-
@telemetry.add_stmt_params_to_df(
|
798
|
-
project=_PROJECT,
|
799
|
-
subproject=_SUBPROJECT,
|
800
|
-
custom_tags=dict([("autogen", True)]),
|
801
|
-
)
|
802
794
|
def predict_proba(
|
803
795
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
804
796
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -839,11 +831,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
839
831
|
subproject=_SUBPROJECT,
|
840
832
|
custom_tags=dict([("autogen", True)]),
|
841
833
|
)
|
842
|
-
@telemetry.add_stmt_params_to_df(
|
843
|
-
project=_PROJECT,
|
844
|
-
subproject=_SUBPROJECT,
|
845
|
-
custom_tags=dict([("autogen", True)]),
|
846
|
-
)
|
847
834
|
def predict_log_proba(
|
848
835
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
849
836
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -880,16 +867,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
880
867
|
return output_df
|
881
868
|
|
882
869
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
883
|
-
@telemetry.send_api_usage_telemetry(
|
884
|
-
project=_PROJECT,
|
885
|
-
subproject=_SUBPROJECT,
|
886
|
-
custom_tags=dict([("autogen", True)]),
|
887
|
-
)
|
888
|
-
@telemetry.add_stmt_params_to_df(
|
889
|
-
project=_PROJECT,
|
890
|
-
subproject=_SUBPROJECT,
|
891
|
-
custom_tags=dict([("autogen", True)]),
|
892
|
-
)
|
893
870
|
def decision_function(
|
894
871
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
895
872
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -990,11 +967,6 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
990
967
|
subproject=_SUBPROJECT,
|
991
968
|
custom_tags=dict([("autogen", True)]),
|
992
969
|
)
|
993
|
-
@telemetry.add_stmt_params_to_df(
|
994
|
-
project=_PROJECT,
|
995
|
-
subproject=_SUBPROJECT,
|
996
|
-
custom_tags=dict([("autogen", True)]),
|
997
|
-
)
|
998
970
|
def kneighbors(
|
999
971
|
self,
|
1000
972
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1054,9 +1026,9 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
1054
1026
|
# For classifier, the type of predict is the same as the type of label
|
1055
1027
|
if self._sklearn_object._estimator_type == 'classifier':
|
1056
1028
|
# label columns is the desired type for output
|
1057
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1029
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1058
1030
|
# rename the output columns
|
1059
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1031
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1060
1032
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1061
1033
|
([] if self._drop_input_cols else inputs)
|
1062
1034
|
+ outputs)
|