snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SkewedChi2Sampler(BaseTransformer):
|
57
58
|
r"""Approximate feature map for "skewed chi-squared" kernel
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
|
@@ -60,54 +61,61 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
skewedness: float, default=1.0
|
64
|
-
"skewedness" parameter of the kernel. Needs to be cross-validated.
|
65
|
-
|
66
|
-
n_components: int, default=100
|
67
|
-
Number of Monte Carlo samples per original feature.
|
68
|
-
Equals the dimensionality of the computed feature space.
|
69
|
-
|
70
|
-
random_state: int, RandomState instance or None, default=None
|
71
|
-
Pseudo-random number generator to control the generation of the random
|
72
|
-
weights and random offset when fitting the training data.
|
73
|
-
Pass an int for reproducible output across multiple function calls.
|
74
|
-
See :term:`Glossary <random_state>`.
|
75
64
|
|
76
65
|
input_cols: Optional[Union[str, List[str]]]
|
77
66
|
A string or list of strings representing column names that contain features.
|
78
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
79
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
80
|
-
parameters are considered input columns.
|
81
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
82
72
|
label_cols: Optional[Union[str, List[str]]]
|
83
|
-
|
84
|
-
|
85
|
-
columns. If this parameter is not specified, then object is fitted without
|
86
|
-
labels (like a transformer).
|
87
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
88
75
|
output_cols: Optional[Union[str, List[str]]]
|
89
76
|
A string or list of strings representing column names that will store the
|
90
77
|
output of predict and transform operations. The length of output_cols must
|
91
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
92
79
|
transformer class used.
|
93
|
-
If this parameter
|
94
|
-
|
95
|
-
|
96
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
97
89
|
|
98
90
|
sample_weight_col: Optional[str]
|
99
91
|
A string representing the column name containing the sample weights.
|
100
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
101
95
|
|
102
96
|
passthrough_cols: Optional[Union[str, List[str]]]
|
103
97
|
A string or a list of strings indicating column names to be excluded from any
|
104
98
|
operations (such as train, transform, or inference). These specified column(s)
|
105
99
|
will remain untouched throughout the process. This option is helpful in scenarios
|
106
100
|
requiring automatic input_cols inference, but need to avoid using specific
|
107
|
-
columns, like index columns, during training or inference.
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
108
103
|
|
109
104
|
drop_input_cols: Optional[bool], default=False
|
110
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
skewedness: float, default=1.0
|
108
|
+
"skewedness" parameter of the kernel. Needs to be cross-validated.
|
109
|
+
|
110
|
+
n_components: int, default=100
|
111
|
+
Number of Monte Carlo samples per original feature.
|
112
|
+
Equals the dimensionality of the computed feature space.
|
113
|
+
|
114
|
+
random_state: int, RandomState instance or None, default=None
|
115
|
+
Pseudo-random number generator to control the generation of the random
|
116
|
+
weights and random offset when fitting the training data.
|
117
|
+
Pass an int for reproducible output across multiple function calls.
|
118
|
+
See :term:`Glossary <random_state>`.
|
111
119
|
"""
|
112
120
|
|
113
121
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -131,7 +139,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
131
139
|
self.set_passthrough_cols(passthrough_cols)
|
132
140
|
self.set_drop_input_cols(drop_input_cols)
|
133
141
|
self.set_sample_weight_col(sample_weight_col)
|
134
|
-
deps = set(
|
142
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
135
143
|
|
136
144
|
self._deps = list(deps)
|
137
145
|
|
@@ -142,13 +150,14 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
142
150
|
args=init_args,
|
143
151
|
klass=sklearn.kernel_approximation.SkewedChi2Sampler
|
144
152
|
)
|
145
|
-
self._sklearn_object = sklearn.kernel_approximation.SkewedChi2Sampler(
|
153
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.SkewedChi2Sampler(
|
146
154
|
**cleaned_up_init_args,
|
147
155
|
)
|
148
156
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
149
157
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
150
158
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
151
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
159
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
160
|
+
self._autogenerated = True
|
152
161
|
|
153
162
|
def _get_rand_id(self) -> str:
|
154
163
|
"""
|
@@ -204,54 +213,48 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
204
213
|
self
|
205
214
|
"""
|
206
215
|
self._infer_input_output_cols(dataset)
|
207
|
-
if isinstance(dataset,
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
self.
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
216
|
+
if isinstance(dataset, DataFrame):
|
217
|
+
session = dataset._session
|
218
|
+
assert session is not None # keep mypy happy
|
219
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
220
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
221
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
222
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
223
|
+
|
224
|
+
# Specify input columns so column pruning will be enforced
|
225
|
+
selected_cols = self._get_active_columns()
|
226
|
+
if len(selected_cols) > 0:
|
227
|
+
dataset = dataset.select(selected_cols)
|
228
|
+
|
229
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
230
|
+
|
231
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
232
|
+
if SNOWML_SPROC_ENV in os.environ:
|
233
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
234
|
+
project=_PROJECT,
|
235
|
+
subproject=_SUBPROJECT,
|
236
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SkewedChi2Sampler.__class__.__name__),
|
237
|
+
api_calls=[Session.call],
|
238
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
239
|
+
)
|
240
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
241
|
+
pd_df.columns = dataset.columns
|
242
|
+
dataset = pd_df
|
243
|
+
|
244
|
+
model_trainer = ModelTrainerBuilder.build(
|
245
|
+
estimator=self._sklearn_object,
|
246
|
+
dataset=dataset,
|
247
|
+
input_cols=self.input_cols,
|
248
|
+
label_cols=self.label_cols,
|
249
|
+
sample_weight_col=self.sample_weight_col,
|
250
|
+
autogenerated=self._autogenerated,
|
251
|
+
subproject=_SUBPROJECT
|
252
|
+
)
|
253
|
+
self._sklearn_object = model_trainer.train()
|
223
254
|
self._is_fitted = True
|
224
255
|
self._get_model_signatures(dataset)
|
225
256
|
return self
|
226
257
|
|
227
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
228
|
-
session = dataset._session
|
229
|
-
assert session is not None # keep mypy happy
|
230
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
-
|
235
|
-
# Specify input columns so column pruning will be enforced
|
236
|
-
selected_cols = self._get_active_columns()
|
237
|
-
if len(selected_cols) > 0:
|
238
|
-
dataset = dataset.select(selected_cols)
|
239
|
-
|
240
|
-
estimator = self._sklearn_object
|
241
|
-
assert estimator is not None # Keep mypy happy
|
242
|
-
|
243
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
-
|
245
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
246
|
-
dataset,
|
247
|
-
session,
|
248
|
-
estimator,
|
249
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
250
|
-
self.input_cols,
|
251
|
-
self.label_cols,
|
252
|
-
self.sample_weight_col,
|
253
|
-
)
|
254
|
-
|
255
258
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
256
259
|
if self._drop_input_cols:
|
257
260
|
return []
|
@@ -439,11 +442,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
439
442
|
subproject=_SUBPROJECT,
|
440
443
|
custom_tags=dict([("autogen", True)]),
|
441
444
|
)
|
442
|
-
@telemetry.add_stmt_params_to_df(
|
443
|
-
project=_PROJECT,
|
444
|
-
subproject=_SUBPROJECT,
|
445
|
-
custom_tags=dict([("autogen", True)]),
|
446
|
-
)
|
447
445
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
448
446
|
"""Method not supported for this class.
|
449
447
|
|
@@ -495,11 +493,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
495
493
|
subproject=_SUBPROJECT,
|
496
494
|
custom_tags=dict([("autogen", True)]),
|
497
495
|
)
|
498
|
-
@telemetry.add_stmt_params_to_df(
|
499
|
-
project=_PROJECT,
|
500
|
-
subproject=_SUBPROJECT,
|
501
|
-
custom_tags=dict([("autogen", True)]),
|
502
|
-
)
|
503
496
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
504
497
|
"""Apply the approximate feature map to X
|
505
498
|
For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.transform]
|
@@ -558,7 +551,8 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
558
551
|
if False:
|
559
552
|
self.fit(dataset)
|
560
553
|
assert self._sklearn_object is not None
|
561
|
-
|
554
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
555
|
+
return labels
|
562
556
|
else:
|
563
557
|
raise NotImplementedError
|
564
558
|
|
@@ -594,6 +588,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
594
588
|
output_cols = []
|
595
589
|
|
596
590
|
# Make sure column names are valid snowflake identifiers.
|
591
|
+
assert output_cols is not None # Make MyPy happy
|
597
592
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
598
593
|
|
599
594
|
return rv
|
@@ -604,11 +599,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
604
599
|
subproject=_SUBPROJECT,
|
605
600
|
custom_tags=dict([("autogen", True)]),
|
606
601
|
)
|
607
|
-
@telemetry.add_stmt_params_to_df(
|
608
|
-
project=_PROJECT,
|
609
|
-
subproject=_SUBPROJECT,
|
610
|
-
custom_tags=dict([("autogen", True)]),
|
611
|
-
)
|
612
602
|
def predict_proba(
|
613
603
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
614
604
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -649,11 +639,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
649
639
|
subproject=_SUBPROJECT,
|
650
640
|
custom_tags=dict([("autogen", True)]),
|
651
641
|
)
|
652
|
-
@telemetry.add_stmt_params_to_df(
|
653
|
-
project=_PROJECT,
|
654
|
-
subproject=_SUBPROJECT,
|
655
|
-
custom_tags=dict([("autogen", True)]),
|
656
|
-
)
|
657
642
|
def predict_log_proba(
|
658
643
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
659
644
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -690,16 +675,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
690
675
|
return output_df
|
691
676
|
|
692
677
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
693
|
-
@telemetry.send_api_usage_telemetry(
|
694
|
-
project=_PROJECT,
|
695
|
-
subproject=_SUBPROJECT,
|
696
|
-
custom_tags=dict([("autogen", True)]),
|
697
|
-
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
678
|
def decision_function(
|
704
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
705
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -798,11 +773,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
798
773
|
subproject=_SUBPROJECT,
|
799
774
|
custom_tags=dict([("autogen", True)]),
|
800
775
|
)
|
801
|
-
@telemetry.add_stmt_params_to_df(
|
802
|
-
project=_PROJECT,
|
803
|
-
subproject=_SUBPROJECT,
|
804
|
-
custom_tags=dict([("autogen", True)]),
|
805
|
-
)
|
806
776
|
def kneighbors(
|
807
777
|
self,
|
808
778
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -862,9 +832,9 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
862
832
|
# For classifier, the type of predict is the same as the type of label
|
863
833
|
if self._sklearn_object._estimator_type == 'classifier':
|
864
834
|
# label columns is the desired type for output
|
865
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
835
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
866
836
|
# rename the output columns
|
867
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
837
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
868
838
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
869
839
|
([] if self._drop_input_cols else inputs)
|
870
840
|
+ outputs)
|