snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PoissonRegressor(BaseTransformer):
|
57
58
|
r"""Generalized Linear Model with a Poisson distribution
|
58
59
|
For more details on this class, see [sklearn.linear_model.PoissonRegressor]
|
@@ -60,6 +61,51 @@ class PoissonRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1
|
64
110
|
Constant that multiplies the L2 penalty term and determines the
|
65
111
|
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
@@ -103,42 +149,6 @@ class PoissonRegressor(BaseTransformer):
|
|
103
149
|
verbose: int, default=0
|
104
150
|
For the lbfgs solver set verbose to any positive number for verbosity.
|
105
151
|
Values must be in the range `[0, inf)`.
|
106
|
-
|
107
|
-
input_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that contain features.
|
109
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
110
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
111
|
-
parameters are considered input columns.
|
112
|
-
|
113
|
-
label_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain labels.
|
115
|
-
This is a required param for estimators, as there is no way to infer these
|
116
|
-
columns. If this parameter is not specified, then object is fitted without
|
117
|
-
labels (like a transformer).
|
118
|
-
|
119
|
-
output_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that will store the
|
121
|
-
output of predict and transform operations. The length of output_cols must
|
122
|
-
match the expected number of output columns from the specific estimator or
|
123
|
-
transformer class used.
|
124
|
-
If this parameter is not specified, output column names are derived by
|
125
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
126
|
-
column names work for estimator's predict() method, but output_cols must
|
127
|
-
be set explicitly for transformers.
|
128
|
-
|
129
|
-
sample_weight_col: Optional[str]
|
130
|
-
A string representing the column name containing the sample weights.
|
131
|
-
This argument is only required when working with weighted datasets.
|
132
|
-
|
133
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or a list of strings indicating column names to be excluded from any
|
135
|
-
operations (such as train, transform, or inference). These specified column(s)
|
136
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
137
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
138
|
-
columns, like index columns, during training or inference.
|
139
|
-
|
140
|
-
drop_input_cols: Optional[bool], default=False
|
141
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
142
152
|
"""
|
143
153
|
|
144
154
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -166,7 +176,7 @@ class PoissonRegressor(BaseTransformer):
|
|
166
176
|
self.set_passthrough_cols(passthrough_cols)
|
167
177
|
self.set_drop_input_cols(drop_input_cols)
|
168
178
|
self.set_sample_weight_col(sample_weight_col)
|
169
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
170
180
|
|
171
181
|
self._deps = list(deps)
|
172
182
|
|
@@ -181,13 +191,14 @@ class PoissonRegressor(BaseTransformer):
|
|
181
191
|
args=init_args,
|
182
192
|
klass=sklearn.linear_model.PoissonRegressor
|
183
193
|
)
|
184
|
-
self._sklearn_object = sklearn.linear_model.PoissonRegressor(
|
194
|
+
self._sklearn_object: Any = sklearn.linear_model.PoissonRegressor(
|
185
195
|
**cleaned_up_init_args,
|
186
196
|
)
|
187
197
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
188
198
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
189
199
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
190
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
200
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
201
|
+
self._autogenerated = True
|
191
202
|
|
192
203
|
def _get_rand_id(self) -> str:
|
193
204
|
"""
|
@@ -243,54 +254,48 @@ class PoissonRegressor(BaseTransformer):
|
|
243
254
|
self
|
244
255
|
"""
|
245
256
|
self._infer_input_output_cols(dataset)
|
246
|
-
if isinstance(dataset,
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
self.
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
257
|
+
if isinstance(dataset, DataFrame):
|
258
|
+
session = dataset._session
|
259
|
+
assert session is not None # keep mypy happy
|
260
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
261
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
262
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
263
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
264
|
+
|
265
|
+
# Specify input columns so column pruning will be enforced
|
266
|
+
selected_cols = self._get_active_columns()
|
267
|
+
if len(selected_cols) > 0:
|
268
|
+
dataset = dataset.select(selected_cols)
|
269
|
+
|
270
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
|
+
|
272
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
273
|
+
if SNOWML_SPROC_ENV in os.environ:
|
274
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
275
|
+
project=_PROJECT,
|
276
|
+
subproject=_SUBPROJECT,
|
277
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PoissonRegressor.__class__.__name__),
|
278
|
+
api_calls=[Session.call],
|
279
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
280
|
+
)
|
281
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
282
|
+
pd_df.columns = dataset.columns
|
283
|
+
dataset = pd_df
|
284
|
+
|
285
|
+
model_trainer = ModelTrainerBuilder.build(
|
286
|
+
estimator=self._sklearn_object,
|
287
|
+
dataset=dataset,
|
288
|
+
input_cols=self.input_cols,
|
289
|
+
label_cols=self.label_cols,
|
290
|
+
sample_weight_col=self.sample_weight_col,
|
291
|
+
autogenerated=self._autogenerated,
|
292
|
+
subproject=_SUBPROJECT
|
293
|
+
)
|
294
|
+
self._sklearn_object = model_trainer.train()
|
262
295
|
self._is_fitted = True
|
263
296
|
self._get_model_signatures(dataset)
|
264
297
|
return self
|
265
298
|
|
266
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
267
|
-
session = dataset._session
|
268
|
-
assert session is not None # keep mypy happy
|
269
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
270
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
271
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
272
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
273
|
-
|
274
|
-
# Specify input columns so column pruning will be enforced
|
275
|
-
selected_cols = self._get_active_columns()
|
276
|
-
if len(selected_cols) > 0:
|
277
|
-
dataset = dataset.select(selected_cols)
|
278
|
-
|
279
|
-
estimator = self._sklearn_object
|
280
|
-
assert estimator is not None # Keep mypy happy
|
281
|
-
|
282
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
283
|
-
|
284
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
285
|
-
dataset,
|
286
|
-
session,
|
287
|
-
estimator,
|
288
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
289
|
-
self.input_cols,
|
290
|
-
self.label_cols,
|
291
|
-
self.sample_weight_col,
|
292
|
-
)
|
293
|
-
|
294
299
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
295
300
|
if self._drop_input_cols:
|
296
301
|
return []
|
@@ -478,11 +483,6 @@ class PoissonRegressor(BaseTransformer):
|
|
478
483
|
subproject=_SUBPROJECT,
|
479
484
|
custom_tags=dict([("autogen", True)]),
|
480
485
|
)
|
481
|
-
@telemetry.add_stmt_params_to_df(
|
482
|
-
project=_PROJECT,
|
483
|
-
subproject=_SUBPROJECT,
|
484
|
-
custom_tags=dict([("autogen", True)]),
|
485
|
-
)
|
486
486
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
487
487
|
"""Predict using GLM with feature matrix X
|
488
488
|
For more details on this function, see [sklearn.linear_model.PoissonRegressor.predict]
|
@@ -536,11 +536,6 @@ class PoissonRegressor(BaseTransformer):
|
|
536
536
|
subproject=_SUBPROJECT,
|
537
537
|
custom_tags=dict([("autogen", True)]),
|
538
538
|
)
|
539
|
-
@telemetry.add_stmt_params_to_df(
|
540
|
-
project=_PROJECT,
|
541
|
-
subproject=_SUBPROJECT,
|
542
|
-
custom_tags=dict([("autogen", True)]),
|
543
|
-
)
|
544
539
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
545
540
|
"""Method not supported for this class.
|
546
541
|
|
@@ -597,7 +592,8 @@ class PoissonRegressor(BaseTransformer):
|
|
597
592
|
if False:
|
598
593
|
self.fit(dataset)
|
599
594
|
assert self._sklearn_object is not None
|
600
|
-
|
595
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
596
|
+
return labels
|
601
597
|
else:
|
602
598
|
raise NotImplementedError
|
603
599
|
|
@@ -633,6 +629,7 @@ class PoissonRegressor(BaseTransformer):
|
|
633
629
|
output_cols = []
|
634
630
|
|
635
631
|
# Make sure column names are valid snowflake identifiers.
|
632
|
+
assert output_cols is not None # Make MyPy happy
|
636
633
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
637
634
|
|
638
635
|
return rv
|
@@ -643,11 +640,6 @@ class PoissonRegressor(BaseTransformer):
|
|
643
640
|
subproject=_SUBPROJECT,
|
644
641
|
custom_tags=dict([("autogen", True)]),
|
645
642
|
)
|
646
|
-
@telemetry.add_stmt_params_to_df(
|
647
|
-
project=_PROJECT,
|
648
|
-
subproject=_SUBPROJECT,
|
649
|
-
custom_tags=dict([("autogen", True)]),
|
650
|
-
)
|
651
643
|
def predict_proba(
|
652
644
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
653
645
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -688,11 +680,6 @@ class PoissonRegressor(BaseTransformer):
|
|
688
680
|
subproject=_SUBPROJECT,
|
689
681
|
custom_tags=dict([("autogen", True)]),
|
690
682
|
)
|
691
|
-
@telemetry.add_stmt_params_to_df(
|
692
|
-
project=_PROJECT,
|
693
|
-
subproject=_SUBPROJECT,
|
694
|
-
custom_tags=dict([("autogen", True)]),
|
695
|
-
)
|
696
683
|
def predict_log_proba(
|
697
684
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
698
685
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -729,16 +716,6 @@ class PoissonRegressor(BaseTransformer):
|
|
729
716
|
return output_df
|
730
717
|
|
731
718
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
732
|
-
@telemetry.send_api_usage_telemetry(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
|
-
@telemetry.add_stmt_params_to_df(
|
738
|
-
project=_PROJECT,
|
739
|
-
subproject=_SUBPROJECT,
|
740
|
-
custom_tags=dict([("autogen", True)]),
|
741
|
-
)
|
742
719
|
def decision_function(
|
743
720
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
744
721
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -839,11 +816,6 @@ class PoissonRegressor(BaseTransformer):
|
|
839
816
|
subproject=_SUBPROJECT,
|
840
817
|
custom_tags=dict([("autogen", True)]),
|
841
818
|
)
|
842
|
-
@telemetry.add_stmt_params_to_df(
|
843
|
-
project=_PROJECT,
|
844
|
-
subproject=_SUBPROJECT,
|
845
|
-
custom_tags=dict([("autogen", True)]),
|
846
|
-
)
|
847
819
|
def kneighbors(
|
848
820
|
self,
|
849
821
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -903,9 +875,9 @@ class PoissonRegressor(BaseTransformer):
|
|
903
875
|
# For classifier, the type of predict is the same as the type of label
|
904
876
|
if self._sklearn_object._estimator_type == 'classifier':
|
905
877
|
# label columns is the desired type for output
|
906
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
878
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
907
879
|
# rename the output columns
|
908
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
880
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
909
881
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
910
882
|
([] if self._drop_input_cols else inputs)
|
911
883
|
+ outputs)
|