snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class PoissonRegressor(BaseTransformer):
57
58
  r"""Generalized Linear Model with a Poisson distribution
58
59
  For more details on this class, see [sklearn.linear_model.PoissonRegressor]
@@ -60,6 +61,51 @@ class PoissonRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float, default=1
64
110
  Constant that multiplies the L2 penalty term and determines the
65
111
  regularization strength. ``alpha = 0`` is equivalent to unpenalized
@@ -103,42 +149,6 @@ class PoissonRegressor(BaseTransformer):
103
149
  verbose: int, default=0
104
150
  For the lbfgs solver set verbose to any positive number for verbosity.
105
151
  Values must be in the range `[0, inf)`.
106
-
107
- input_cols: Optional[Union[str, List[str]]]
108
- A string or list of strings representing column names that contain features.
109
- If this parameter is not specified, all columns in the input DataFrame except
110
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
111
- parameters are considered input columns.
112
-
113
- label_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain labels.
115
- This is a required param for estimators, as there is no way to infer these
116
- columns. If this parameter is not specified, then object is fitted without
117
- labels (like a transformer).
118
-
119
- output_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that will store the
121
- output of predict and transform operations. The length of output_cols must
122
- match the expected number of output columns from the specific estimator or
123
- transformer class used.
124
- If this parameter is not specified, output column names are derived by
125
- adding an OUTPUT_ prefix to the label column names. These inferred output
126
- column names work for estimator's predict() method, but output_cols must
127
- be set explicitly for transformers.
128
-
129
- sample_weight_col: Optional[str]
130
- A string representing the column name containing the sample weights.
131
- This argument is only required when working with weighted datasets.
132
-
133
- passthrough_cols: Optional[Union[str, List[str]]]
134
- A string or a list of strings indicating column names to be excluded from any
135
- operations (such as train, transform, or inference). These specified column(s)
136
- will remain untouched throughout the process. This option is helpful in scenarios
137
- requiring automatic input_cols inference, but need to avoid using specific
138
- columns, like index columns, during training or inference.
139
-
140
- drop_input_cols: Optional[bool], default=False
141
- If set, the response of predict(), transform() methods will not contain input columns.
142
152
  """
143
153
 
144
154
  def __init__( # type: ignore[no-untyped-def]
@@ -166,7 +176,7 @@ class PoissonRegressor(BaseTransformer):
166
176
  self.set_passthrough_cols(passthrough_cols)
167
177
  self.set_drop_input_cols(drop_input_cols)
168
178
  self.set_sample_weight_col(sample_weight_col)
169
- deps = set(SklearnWrapperProvider().dependencies)
179
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
170
180
 
171
181
  self._deps = list(deps)
172
182
 
@@ -181,13 +191,14 @@ class PoissonRegressor(BaseTransformer):
181
191
  args=init_args,
182
192
  klass=sklearn.linear_model.PoissonRegressor
183
193
  )
184
- self._sklearn_object = sklearn.linear_model.PoissonRegressor(
194
+ self._sklearn_object: Any = sklearn.linear_model.PoissonRegressor(
185
195
  **cleaned_up_init_args,
186
196
  )
187
197
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
188
198
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
189
199
  self._snowpark_cols: Optional[List[str]] = self.input_cols
190
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
200
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
201
+ self._autogenerated = True
191
202
 
192
203
  def _get_rand_id(self) -> str:
193
204
  """
@@ -243,54 +254,48 @@ class PoissonRegressor(BaseTransformer):
243
254
  self
244
255
  """
245
256
  self._infer_input_output_cols(dataset)
246
- if isinstance(dataset, pd.DataFrame):
247
- assert self._sklearn_object is not None # keep mypy happy
248
- self._sklearn_object = self._handlers.fit_pandas(
249
- dataset,
250
- self._sklearn_object,
251
- self.input_cols,
252
- self.label_cols,
253
- self.sample_weight_col
254
- )
255
- elif isinstance(dataset, DataFrame):
256
- self._fit_snowpark(dataset)
257
- else:
258
- raise TypeError(
259
- f"Unexpected dataset type: {type(dataset)}."
260
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
261
- )
257
+ if isinstance(dataset, DataFrame):
258
+ session = dataset._session
259
+ assert session is not None # keep mypy happy
260
+ # Validate that key package version in user workspace are supported in snowflake conda channel
261
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
262
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
263
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
264
+
265
+ # Specify input columns so column pruning will be enforced
266
+ selected_cols = self._get_active_columns()
267
+ if len(selected_cols) > 0:
268
+ dataset = dataset.select(selected_cols)
269
+
270
+ self._snowpark_cols = dataset.select(self.input_cols).columns
271
+
272
+ # If we are already in a stored procedure, no need to kick off another one.
273
+ if SNOWML_SPROC_ENV in os.environ:
274
+ statement_params = telemetry.get_function_usage_statement_params(
275
+ project=_PROJECT,
276
+ subproject=_SUBPROJECT,
277
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PoissonRegressor.__class__.__name__),
278
+ api_calls=[Session.call],
279
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
+ )
281
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
282
+ pd_df.columns = dataset.columns
283
+ dataset = pd_df
284
+
285
+ model_trainer = ModelTrainerBuilder.build(
286
+ estimator=self._sklearn_object,
287
+ dataset=dataset,
288
+ input_cols=self.input_cols,
289
+ label_cols=self.label_cols,
290
+ sample_weight_col=self.sample_weight_col,
291
+ autogenerated=self._autogenerated,
292
+ subproject=_SUBPROJECT
293
+ )
294
+ self._sklearn_object = model_trainer.train()
262
295
  self._is_fitted = True
263
296
  self._get_model_signatures(dataset)
264
297
  return self
265
298
 
266
- def _fit_snowpark(self, dataset: DataFrame) -> None:
267
- session = dataset._session
268
- assert session is not None # keep mypy happy
269
- # Validate that key package version in user workspace are supported in snowflake conda channel
270
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
271
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
272
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
273
-
274
- # Specify input columns so column pruning will be enforced
275
- selected_cols = self._get_active_columns()
276
- if len(selected_cols) > 0:
277
- dataset = dataset.select(selected_cols)
278
-
279
- estimator = self._sklearn_object
280
- assert estimator is not None # Keep mypy happy
281
-
282
- self._snowpark_cols = dataset.select(self.input_cols).columns
283
-
284
- self._sklearn_object = self._handlers.fit_snowpark(
285
- dataset,
286
- session,
287
- estimator,
288
- ["snowflake-snowpark-python"] + self._get_dependencies(),
289
- self.input_cols,
290
- self.label_cols,
291
- self.sample_weight_col,
292
- )
293
-
294
299
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
295
300
  if self._drop_input_cols:
296
301
  return []
@@ -478,11 +483,6 @@ class PoissonRegressor(BaseTransformer):
478
483
  subproject=_SUBPROJECT,
479
484
  custom_tags=dict([("autogen", True)]),
480
485
  )
481
- @telemetry.add_stmt_params_to_df(
482
- project=_PROJECT,
483
- subproject=_SUBPROJECT,
484
- custom_tags=dict([("autogen", True)]),
485
- )
486
486
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
487
487
  """Predict using GLM with feature matrix X
488
488
  For more details on this function, see [sklearn.linear_model.PoissonRegressor.predict]
@@ -536,11 +536,6 @@ class PoissonRegressor(BaseTransformer):
536
536
  subproject=_SUBPROJECT,
537
537
  custom_tags=dict([("autogen", True)]),
538
538
  )
539
- @telemetry.add_stmt_params_to_df(
540
- project=_PROJECT,
541
- subproject=_SUBPROJECT,
542
- custom_tags=dict([("autogen", True)]),
543
- )
544
539
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
545
540
  """Method not supported for this class.
546
541
 
@@ -597,7 +592,8 @@ class PoissonRegressor(BaseTransformer):
597
592
  if False:
598
593
  self.fit(dataset)
599
594
  assert self._sklearn_object is not None
600
- return self._sklearn_object.labels_
595
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
596
+ return labels
601
597
  else:
602
598
  raise NotImplementedError
603
599
 
@@ -633,6 +629,7 @@ class PoissonRegressor(BaseTransformer):
633
629
  output_cols = []
634
630
 
635
631
  # Make sure column names are valid snowflake identifiers.
632
+ assert output_cols is not None # Make MyPy happy
636
633
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
637
634
 
638
635
  return rv
@@ -643,11 +640,6 @@ class PoissonRegressor(BaseTransformer):
643
640
  subproject=_SUBPROJECT,
644
641
  custom_tags=dict([("autogen", True)]),
645
642
  )
646
- @telemetry.add_stmt_params_to_df(
647
- project=_PROJECT,
648
- subproject=_SUBPROJECT,
649
- custom_tags=dict([("autogen", True)]),
650
- )
651
643
  def predict_proba(
652
644
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
653
645
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -688,11 +680,6 @@ class PoissonRegressor(BaseTransformer):
688
680
  subproject=_SUBPROJECT,
689
681
  custom_tags=dict([("autogen", True)]),
690
682
  )
691
- @telemetry.add_stmt_params_to_df(
692
- project=_PROJECT,
693
- subproject=_SUBPROJECT,
694
- custom_tags=dict([("autogen", True)]),
695
- )
696
683
  def predict_log_proba(
697
684
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
698
685
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -729,16 +716,6 @@ class PoissonRegressor(BaseTransformer):
729
716
  return output_df
730
717
 
731
718
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
732
- @telemetry.send_api_usage_telemetry(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
- @telemetry.add_stmt_params_to_df(
738
- project=_PROJECT,
739
- subproject=_SUBPROJECT,
740
- custom_tags=dict([("autogen", True)]),
741
- )
742
719
  def decision_function(
743
720
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
744
721
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -839,11 +816,6 @@ class PoissonRegressor(BaseTransformer):
839
816
  subproject=_SUBPROJECT,
840
817
  custom_tags=dict([("autogen", True)]),
841
818
  )
842
- @telemetry.add_stmt_params_to_df(
843
- project=_PROJECT,
844
- subproject=_SUBPROJECT,
845
- custom_tags=dict([("autogen", True)]),
846
- )
847
819
  def kneighbors(
848
820
  self,
849
821
  dataset: Union[DataFrame, pd.DataFrame],
@@ -903,9 +875,9 @@ class PoissonRegressor(BaseTransformer):
903
875
  # For classifier, the type of predict is the same as the type of label
904
876
  if self._sklearn_object._estimator_type == 'classifier':
905
877
  # label columns is the desired type for output
906
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
878
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
907
879
  # rename the output columns
908
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
880
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
909
881
  self._model_signature_dict["predict"] = ModelSignature(inputs,
910
882
  ([] if self._drop_input_cols else inputs)
911
883
  + outputs)