snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LedoitWolf(BaseTransformer):
57
58
  r"""LedoitWolf Estimator
58
59
  For more details on this class, see [sklearn.covariance.LedoitWolf]
@@ -60,55 +61,62 @@ class LedoitWolf(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- store_precision: bool, default=True
64
- Specify if the estimated precision is stored.
65
-
66
- assume_centered: bool, default=False
67
- If True, data will not be centered before computation.
68
- Useful when working with data whose mean is almost, but not exactly
69
- zero.
70
- If False (default), data will be centered before computation.
71
-
72
- block_size: int, default=1000
73
- Size of blocks into which the covariance matrix will be split
74
- during its Ledoit-Wolf estimation. This is purely a memory
75
- optimization and does not affect results.
76
64
 
77
65
  input_cols: Optional[Union[str, List[str]]]
78
66
  A string or list of strings representing column names that contain features.
79
67
  If this parameter is not specified, all columns in the input DataFrame except
80
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
81
- parameters are considered input columns.
82
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
83
72
  label_cols: Optional[Union[str, List[str]]]
84
- A string or list of strings representing column names that contain labels.
85
- This is a required param for estimators, as there is no way to infer these
86
- columns. If this parameter is not specified, then object is fitted without
87
- labels (like a transformer).
88
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
89
75
  output_cols: Optional[Union[str, List[str]]]
90
76
  A string or list of strings representing column names that will store the
91
77
  output of predict and transform operations. The length of output_cols must
92
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
93
79
  transformer class used.
94
- If this parameter is not specified, output column names are derived by
95
- adding an OUTPUT_ prefix to the label column names. These inferred output
96
- column names work for estimator's predict() method, but output_cols must
97
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
98
89
 
99
90
  sample_weight_col: Optional[str]
100
91
  A string representing the column name containing the sample weights.
101
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
102
95
 
103
96
  passthrough_cols: Optional[Union[str, List[str]]]
104
97
  A string or a list of strings indicating column names to be excluded from any
105
98
  operations (such as train, transform, or inference). These specified column(s)
106
99
  will remain untouched throughout the process. This option is helpful in scenarios
107
100
  requiring automatic input_cols inference, but need to avoid using specific
108
- columns, like index columns, during training or inference.
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
109
103
 
110
104
  drop_input_cols: Optional[bool], default=False
111
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ store_precision: bool, default=True
108
+ Specify if the estimated precision is stored.
109
+
110
+ assume_centered: bool, default=False
111
+ If True, data will not be centered before computation.
112
+ Useful when working with data whose mean is almost, but not exactly
113
+ zero.
114
+ If False (default), data will be centered before computation.
115
+
116
+ block_size: int, default=1000
117
+ Size of blocks into which the covariance matrix will be split
118
+ during its Ledoit-Wolf estimation. This is purely a memory
119
+ optimization and does not affect results.
112
120
  """
113
121
 
114
122
  def __init__( # type: ignore[no-untyped-def]
@@ -132,7 +140,7 @@ class LedoitWolf(BaseTransformer):
132
140
  self.set_passthrough_cols(passthrough_cols)
133
141
  self.set_drop_input_cols(drop_input_cols)
134
142
  self.set_sample_weight_col(sample_weight_col)
135
- deps = set(SklearnWrapperProvider().dependencies)
143
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
136
144
 
137
145
  self._deps = list(deps)
138
146
 
@@ -143,13 +151,14 @@ class LedoitWolf(BaseTransformer):
143
151
  args=init_args,
144
152
  klass=sklearn.covariance.LedoitWolf
145
153
  )
146
- self._sklearn_object = sklearn.covariance.LedoitWolf(
154
+ self._sklearn_object: Any = sklearn.covariance.LedoitWolf(
147
155
  **cleaned_up_init_args,
148
156
  )
149
157
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
150
158
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
151
159
  self._snowpark_cols: Optional[List[str]] = self.input_cols
152
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
160
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
161
+ self._autogenerated = True
153
162
 
154
163
  def _get_rand_id(self) -> str:
155
164
  """
@@ -205,54 +214,48 @@ class LedoitWolf(BaseTransformer):
205
214
  self
206
215
  """
207
216
  self._infer_input_output_cols(dataset)
208
- if isinstance(dataset, pd.DataFrame):
209
- assert self._sklearn_object is not None # keep mypy happy
210
- self._sklearn_object = self._handlers.fit_pandas(
211
- dataset,
212
- self._sklearn_object,
213
- self.input_cols,
214
- self.label_cols,
215
- self.sample_weight_col
216
- )
217
- elif isinstance(dataset, DataFrame):
218
- self._fit_snowpark(dataset)
219
- else:
220
- raise TypeError(
221
- f"Unexpected dataset type: {type(dataset)}."
222
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
223
- )
217
+ if isinstance(dataset, DataFrame):
218
+ session = dataset._session
219
+ assert session is not None # keep mypy happy
220
+ # Validate that key package version in user workspace are supported in snowflake conda channel
221
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
222
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
223
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
224
+
225
+ # Specify input columns so column pruning will be enforced
226
+ selected_cols = self._get_active_columns()
227
+ if len(selected_cols) > 0:
228
+ dataset = dataset.select(selected_cols)
229
+
230
+ self._snowpark_cols = dataset.select(self.input_cols).columns
231
+
232
+ # If we are already in a stored procedure, no need to kick off another one.
233
+ if SNOWML_SPROC_ENV in os.environ:
234
+ statement_params = telemetry.get_function_usage_statement_params(
235
+ project=_PROJECT,
236
+ subproject=_SUBPROJECT,
237
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
238
+ api_calls=[Session.call],
239
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
240
+ )
241
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
242
+ pd_df.columns = dataset.columns
243
+ dataset = pd_df
244
+
245
+ model_trainer = ModelTrainerBuilder.build(
246
+ estimator=self._sklearn_object,
247
+ dataset=dataset,
248
+ input_cols=self.input_cols,
249
+ label_cols=self.label_cols,
250
+ sample_weight_col=self.sample_weight_col,
251
+ autogenerated=self._autogenerated,
252
+ subproject=_SUBPROJECT
253
+ )
254
+ self._sklearn_object = model_trainer.train()
224
255
  self._is_fitted = True
225
256
  self._get_model_signatures(dataset)
226
257
  return self
227
258
 
228
- def _fit_snowpark(self, dataset: DataFrame) -> None:
229
- session = dataset._session
230
- assert session is not None # keep mypy happy
231
- # Validate that key package version in user workspace are supported in snowflake conda channel
232
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
233
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
234
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
235
-
236
- # Specify input columns so column pruning will be enforced
237
- selected_cols = self._get_active_columns()
238
- if len(selected_cols) > 0:
239
- dataset = dataset.select(selected_cols)
240
-
241
- estimator = self._sklearn_object
242
- assert estimator is not None # Keep mypy happy
243
-
244
- self._snowpark_cols = dataset.select(self.input_cols).columns
245
-
246
- self._sklearn_object = self._handlers.fit_snowpark(
247
- dataset,
248
- session,
249
- estimator,
250
- ["snowflake-snowpark-python"] + self._get_dependencies(),
251
- self.input_cols,
252
- self.label_cols,
253
- self.sample_weight_col,
254
- )
255
-
256
259
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
257
260
  if self._drop_input_cols:
258
261
  return []
@@ -440,11 +443,6 @@ class LedoitWolf(BaseTransformer):
440
443
  subproject=_SUBPROJECT,
441
444
  custom_tags=dict([("autogen", True)]),
442
445
  )
443
- @telemetry.add_stmt_params_to_df(
444
- project=_PROJECT,
445
- subproject=_SUBPROJECT,
446
- custom_tags=dict([("autogen", True)]),
447
- )
448
446
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
449
447
  """Method not supported for this class.
450
448
 
@@ -496,11 +494,6 @@ class LedoitWolf(BaseTransformer):
496
494
  subproject=_SUBPROJECT,
497
495
  custom_tags=dict([("autogen", True)]),
498
496
  )
499
- @telemetry.add_stmt_params_to_df(
500
- project=_PROJECT,
501
- subproject=_SUBPROJECT,
502
- custom_tags=dict([("autogen", True)]),
503
- )
504
497
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
505
498
  """Method not supported for this class.
506
499
 
@@ -557,7 +550,8 @@ class LedoitWolf(BaseTransformer):
557
550
  if False:
558
551
  self.fit(dataset)
559
552
  assert self._sklearn_object is not None
560
- return self._sklearn_object.labels_
553
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
554
+ return labels
561
555
  else:
562
556
  raise NotImplementedError
563
557
 
@@ -593,6 +587,7 @@ class LedoitWolf(BaseTransformer):
593
587
  output_cols = []
594
588
 
595
589
  # Make sure column names are valid snowflake identifiers.
590
+ assert output_cols is not None # Make MyPy happy
596
591
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
597
592
 
598
593
  return rv
@@ -603,11 +598,6 @@ class LedoitWolf(BaseTransformer):
603
598
  subproject=_SUBPROJECT,
604
599
  custom_tags=dict([("autogen", True)]),
605
600
  )
606
- @telemetry.add_stmt_params_to_df(
607
- project=_PROJECT,
608
- subproject=_SUBPROJECT,
609
- custom_tags=dict([("autogen", True)]),
610
- )
611
601
  def predict_proba(
612
602
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
613
603
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -648,11 +638,6 @@ class LedoitWolf(BaseTransformer):
648
638
  subproject=_SUBPROJECT,
649
639
  custom_tags=dict([("autogen", True)]),
650
640
  )
651
- @telemetry.add_stmt_params_to_df(
652
- project=_PROJECT,
653
- subproject=_SUBPROJECT,
654
- custom_tags=dict([("autogen", True)]),
655
- )
656
641
  def predict_log_proba(
657
642
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
658
643
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -689,16 +674,6 @@ class LedoitWolf(BaseTransformer):
689
674
  return output_df
690
675
 
691
676
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
692
- @telemetry.send_api_usage_telemetry(
693
- project=_PROJECT,
694
- subproject=_SUBPROJECT,
695
- custom_tags=dict([("autogen", True)]),
696
- )
697
- @telemetry.add_stmt_params_to_df(
698
- project=_PROJECT,
699
- subproject=_SUBPROJECT,
700
- custom_tags=dict([("autogen", True)]),
701
- )
702
677
  def decision_function(
703
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
704
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -799,11 +774,6 @@ class LedoitWolf(BaseTransformer):
799
774
  subproject=_SUBPROJECT,
800
775
  custom_tags=dict([("autogen", True)]),
801
776
  )
802
- @telemetry.add_stmt_params_to_df(
803
- project=_PROJECT,
804
- subproject=_SUBPROJECT,
805
- custom_tags=dict([("autogen", True)]),
806
- )
807
777
  def kneighbors(
808
778
  self,
809
779
  dataset: Union[DataFrame, pd.DataFrame],
@@ -863,9 +833,9 @@ class LedoitWolf(BaseTransformer):
863
833
  # For classifier, the type of predict is the same as the type of label
864
834
  if self._sklearn_object._estimator_type == 'classifier':
865
835
  # label columns is the desired type for output
866
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
836
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
867
837
  # rename the output columns
868
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
838
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
869
839
  self._model_signature_dict["predict"] = ModelSignature(inputs,
870
840
  ([] if self._drop_input_cols else inputs)
871
841
  + outputs)