snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LedoitWolf(BaseTransformer):
|
57
58
|
r"""LedoitWolf Estimator
|
58
59
|
For more details on this class, see [sklearn.covariance.LedoitWolf]
|
@@ -60,55 +61,62 @@ class LedoitWolf(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
store_precision: bool, default=True
|
64
|
-
Specify if the estimated precision is stored.
|
65
|
-
|
66
|
-
assume_centered: bool, default=False
|
67
|
-
If True, data will not be centered before computation.
|
68
|
-
Useful when working with data whose mean is almost, but not exactly
|
69
|
-
zero.
|
70
|
-
If False (default), data will be centered before computation.
|
71
|
-
|
72
|
-
block_size: int, default=1000
|
73
|
-
Size of blocks into which the covariance matrix will be split
|
74
|
-
during its Ledoit-Wolf estimation. This is purely a memory
|
75
|
-
optimization and does not affect results.
|
76
64
|
|
77
65
|
input_cols: Optional[Union[str, List[str]]]
|
78
66
|
A string or list of strings representing column names that contain features.
|
79
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
80
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
81
|
-
parameters are considered input columns.
|
82
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
83
72
|
label_cols: Optional[Union[str, List[str]]]
|
84
|
-
|
85
|
-
|
86
|
-
columns. If this parameter is not specified, then object is fitted without
|
87
|
-
labels (like a transformer).
|
88
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
89
75
|
output_cols: Optional[Union[str, List[str]]]
|
90
76
|
A string or list of strings representing column names that will store the
|
91
77
|
output of predict and transform operations. The length of output_cols must
|
92
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
93
79
|
transformer class used.
|
94
|
-
If this parameter
|
95
|
-
|
96
|
-
|
97
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
98
89
|
|
99
90
|
sample_weight_col: Optional[str]
|
100
91
|
A string representing the column name containing the sample weights.
|
101
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
102
95
|
|
103
96
|
passthrough_cols: Optional[Union[str, List[str]]]
|
104
97
|
A string or a list of strings indicating column names to be excluded from any
|
105
98
|
operations (such as train, transform, or inference). These specified column(s)
|
106
99
|
will remain untouched throughout the process. This option is helpful in scenarios
|
107
100
|
requiring automatic input_cols inference, but need to avoid using specific
|
108
|
-
columns, like index columns, during training or inference.
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
109
103
|
|
110
104
|
drop_input_cols: Optional[bool], default=False
|
111
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
store_precision: bool, default=True
|
108
|
+
Specify if the estimated precision is stored.
|
109
|
+
|
110
|
+
assume_centered: bool, default=False
|
111
|
+
If True, data will not be centered before computation.
|
112
|
+
Useful when working with data whose mean is almost, but not exactly
|
113
|
+
zero.
|
114
|
+
If False (default), data will be centered before computation.
|
115
|
+
|
116
|
+
block_size: int, default=1000
|
117
|
+
Size of blocks into which the covariance matrix will be split
|
118
|
+
during its Ledoit-Wolf estimation. This is purely a memory
|
119
|
+
optimization and does not affect results.
|
112
120
|
"""
|
113
121
|
|
114
122
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -132,7 +140,7 @@ class LedoitWolf(BaseTransformer):
|
|
132
140
|
self.set_passthrough_cols(passthrough_cols)
|
133
141
|
self.set_drop_input_cols(drop_input_cols)
|
134
142
|
self.set_sample_weight_col(sample_weight_col)
|
135
|
-
deps = set(
|
143
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
136
144
|
|
137
145
|
self._deps = list(deps)
|
138
146
|
|
@@ -143,13 +151,14 @@ class LedoitWolf(BaseTransformer):
|
|
143
151
|
args=init_args,
|
144
152
|
klass=sklearn.covariance.LedoitWolf
|
145
153
|
)
|
146
|
-
self._sklearn_object = sklearn.covariance.LedoitWolf(
|
154
|
+
self._sklearn_object: Any = sklearn.covariance.LedoitWolf(
|
147
155
|
**cleaned_up_init_args,
|
148
156
|
)
|
149
157
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
150
158
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
151
159
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
152
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
160
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
161
|
+
self._autogenerated = True
|
153
162
|
|
154
163
|
def _get_rand_id(self) -> str:
|
155
164
|
"""
|
@@ -205,54 +214,48 @@ class LedoitWolf(BaseTransformer):
|
|
205
214
|
self
|
206
215
|
"""
|
207
216
|
self._infer_input_output_cols(dataset)
|
208
|
-
if isinstance(dataset,
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
self.
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
217
|
+
if isinstance(dataset, DataFrame):
|
218
|
+
session = dataset._session
|
219
|
+
assert session is not None # keep mypy happy
|
220
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
221
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
222
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
223
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
224
|
+
|
225
|
+
# Specify input columns so column pruning will be enforced
|
226
|
+
selected_cols = self._get_active_columns()
|
227
|
+
if len(selected_cols) > 0:
|
228
|
+
dataset = dataset.select(selected_cols)
|
229
|
+
|
230
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
231
|
+
|
232
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
233
|
+
if SNOWML_SPROC_ENV in os.environ:
|
234
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
235
|
+
project=_PROJECT,
|
236
|
+
subproject=_SUBPROJECT,
|
237
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
|
238
|
+
api_calls=[Session.call],
|
239
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
240
|
+
)
|
241
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
242
|
+
pd_df.columns = dataset.columns
|
243
|
+
dataset = pd_df
|
244
|
+
|
245
|
+
model_trainer = ModelTrainerBuilder.build(
|
246
|
+
estimator=self._sklearn_object,
|
247
|
+
dataset=dataset,
|
248
|
+
input_cols=self.input_cols,
|
249
|
+
label_cols=self.label_cols,
|
250
|
+
sample_weight_col=self.sample_weight_col,
|
251
|
+
autogenerated=self._autogenerated,
|
252
|
+
subproject=_SUBPROJECT
|
253
|
+
)
|
254
|
+
self._sklearn_object = model_trainer.train()
|
224
255
|
self._is_fitted = True
|
225
256
|
self._get_model_signatures(dataset)
|
226
257
|
return self
|
227
258
|
|
228
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
229
|
-
session = dataset._session
|
230
|
-
assert session is not None # keep mypy happy
|
231
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
232
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
233
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
234
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
235
|
-
|
236
|
-
# Specify input columns so column pruning will be enforced
|
237
|
-
selected_cols = self._get_active_columns()
|
238
|
-
if len(selected_cols) > 0:
|
239
|
-
dataset = dataset.select(selected_cols)
|
240
|
-
|
241
|
-
estimator = self._sklearn_object
|
242
|
-
assert estimator is not None # Keep mypy happy
|
243
|
-
|
244
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
245
|
-
|
246
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
247
|
-
dataset,
|
248
|
-
session,
|
249
|
-
estimator,
|
250
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
251
|
-
self.input_cols,
|
252
|
-
self.label_cols,
|
253
|
-
self.sample_weight_col,
|
254
|
-
)
|
255
|
-
|
256
259
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
257
260
|
if self._drop_input_cols:
|
258
261
|
return []
|
@@ -440,11 +443,6 @@ class LedoitWolf(BaseTransformer):
|
|
440
443
|
subproject=_SUBPROJECT,
|
441
444
|
custom_tags=dict([("autogen", True)]),
|
442
445
|
)
|
443
|
-
@telemetry.add_stmt_params_to_df(
|
444
|
-
project=_PROJECT,
|
445
|
-
subproject=_SUBPROJECT,
|
446
|
-
custom_tags=dict([("autogen", True)]),
|
447
|
-
)
|
448
446
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
449
447
|
"""Method not supported for this class.
|
450
448
|
|
@@ -496,11 +494,6 @@ class LedoitWolf(BaseTransformer):
|
|
496
494
|
subproject=_SUBPROJECT,
|
497
495
|
custom_tags=dict([("autogen", True)]),
|
498
496
|
)
|
499
|
-
@telemetry.add_stmt_params_to_df(
|
500
|
-
project=_PROJECT,
|
501
|
-
subproject=_SUBPROJECT,
|
502
|
-
custom_tags=dict([("autogen", True)]),
|
503
|
-
)
|
504
497
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
505
498
|
"""Method not supported for this class.
|
506
499
|
|
@@ -557,7 +550,8 @@ class LedoitWolf(BaseTransformer):
|
|
557
550
|
if False:
|
558
551
|
self.fit(dataset)
|
559
552
|
assert self._sklearn_object is not None
|
560
|
-
|
553
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
554
|
+
return labels
|
561
555
|
else:
|
562
556
|
raise NotImplementedError
|
563
557
|
|
@@ -593,6 +587,7 @@ class LedoitWolf(BaseTransformer):
|
|
593
587
|
output_cols = []
|
594
588
|
|
595
589
|
# Make sure column names are valid snowflake identifiers.
|
590
|
+
assert output_cols is not None # Make MyPy happy
|
596
591
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
597
592
|
|
598
593
|
return rv
|
@@ -603,11 +598,6 @@ class LedoitWolf(BaseTransformer):
|
|
603
598
|
subproject=_SUBPROJECT,
|
604
599
|
custom_tags=dict([("autogen", True)]),
|
605
600
|
)
|
606
|
-
@telemetry.add_stmt_params_to_df(
|
607
|
-
project=_PROJECT,
|
608
|
-
subproject=_SUBPROJECT,
|
609
|
-
custom_tags=dict([("autogen", True)]),
|
610
|
-
)
|
611
601
|
def predict_proba(
|
612
602
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
613
603
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -648,11 +638,6 @@ class LedoitWolf(BaseTransformer):
|
|
648
638
|
subproject=_SUBPROJECT,
|
649
639
|
custom_tags=dict([("autogen", True)]),
|
650
640
|
)
|
651
|
-
@telemetry.add_stmt_params_to_df(
|
652
|
-
project=_PROJECT,
|
653
|
-
subproject=_SUBPROJECT,
|
654
|
-
custom_tags=dict([("autogen", True)]),
|
655
|
-
)
|
656
641
|
def predict_log_proba(
|
657
642
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
658
643
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -689,16 +674,6 @@ class LedoitWolf(BaseTransformer):
|
|
689
674
|
return output_df
|
690
675
|
|
691
676
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
692
|
-
@telemetry.send_api_usage_telemetry(
|
693
|
-
project=_PROJECT,
|
694
|
-
subproject=_SUBPROJECT,
|
695
|
-
custom_tags=dict([("autogen", True)]),
|
696
|
-
)
|
697
|
-
@telemetry.add_stmt_params_to_df(
|
698
|
-
project=_PROJECT,
|
699
|
-
subproject=_SUBPROJECT,
|
700
|
-
custom_tags=dict([("autogen", True)]),
|
701
|
-
)
|
702
677
|
def decision_function(
|
703
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
704
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -799,11 +774,6 @@ class LedoitWolf(BaseTransformer):
|
|
799
774
|
subproject=_SUBPROJECT,
|
800
775
|
custom_tags=dict([("autogen", True)]),
|
801
776
|
)
|
802
|
-
@telemetry.add_stmt_params_to_df(
|
803
|
-
project=_PROJECT,
|
804
|
-
subproject=_SUBPROJECT,
|
805
|
-
custom_tags=dict([("autogen", True)]),
|
806
|
-
)
|
807
777
|
def kneighbors(
|
808
778
|
self,
|
809
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -863,9 +833,9 @@ class LedoitWolf(BaseTransformer):
|
|
863
833
|
# For classifier, the type of predict is the same as the type of label
|
864
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
865
835
|
# label columns is the desired type for output
|
866
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
867
837
|
# rename the output columns
|
868
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
869
839
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
870
840
|
([] if self._drop_input_cols else inputs)
|
871
841
|
+ outputs)
|