snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TheilSenRegressor(BaseTransformer):
|
57
58
|
r"""Theil-Sen Estimator: robust multivariate regression model
|
58
59
|
For more details on this class, see [sklearn.linear_model.TheilSenRegressor]
|
@@ -60,6 +61,51 @@ class TheilSenRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
fit_intercept: bool, default=True
|
64
110
|
Whether to calculate the intercept for this model. If set
|
65
111
|
to false, no intercept will be used in calculations.
|
@@ -106,42 +152,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
106
152
|
|
107
153
|
verbose: bool, default=False
|
108
154
|
Verbose mode when fitting the model.
|
109
|
-
|
110
|
-
input_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain features.
|
112
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
113
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
114
|
-
parameters are considered input columns.
|
115
|
-
|
116
|
-
label_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that contain labels.
|
118
|
-
This is a required param for estimators, as there is no way to infer these
|
119
|
-
columns. If this parameter is not specified, then object is fitted without
|
120
|
-
labels (like a transformer).
|
121
|
-
|
122
|
-
output_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that will store the
|
124
|
-
output of predict and transform operations. The length of output_cols must
|
125
|
-
match the expected number of output columns from the specific estimator or
|
126
|
-
transformer class used.
|
127
|
-
If this parameter is not specified, output column names are derived by
|
128
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
129
|
-
column names work for estimator's predict() method, but output_cols must
|
130
|
-
be set explicitly for transformers.
|
131
|
-
|
132
|
-
sample_weight_col: Optional[str]
|
133
|
-
A string representing the column name containing the sample weights.
|
134
|
-
This argument is only required when working with weighted datasets.
|
135
|
-
|
136
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or a list of strings indicating column names to be excluded from any
|
138
|
-
operations (such as train, transform, or inference). These specified column(s)
|
139
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
140
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
141
|
-
columns, like index columns, during training or inference.
|
142
|
-
|
143
|
-
drop_input_cols: Optional[bool], default=False
|
144
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
145
155
|
"""
|
146
156
|
|
147
157
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -171,7 +181,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
171
181
|
self.set_passthrough_cols(passthrough_cols)
|
172
182
|
self.set_drop_input_cols(drop_input_cols)
|
173
183
|
self.set_sample_weight_col(sample_weight_col)
|
174
|
-
deps = set(
|
184
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
175
185
|
|
176
186
|
self._deps = list(deps)
|
177
187
|
|
@@ -188,13 +198,14 @@ class TheilSenRegressor(BaseTransformer):
|
|
188
198
|
args=init_args,
|
189
199
|
klass=sklearn.linear_model.TheilSenRegressor
|
190
200
|
)
|
191
|
-
self._sklearn_object = sklearn.linear_model.TheilSenRegressor(
|
201
|
+
self._sklearn_object: Any = sklearn.linear_model.TheilSenRegressor(
|
192
202
|
**cleaned_up_init_args,
|
193
203
|
)
|
194
204
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
195
205
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
196
206
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
197
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
207
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TheilSenRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
208
|
+
self._autogenerated = True
|
198
209
|
|
199
210
|
def _get_rand_id(self) -> str:
|
200
211
|
"""
|
@@ -250,54 +261,48 @@ class TheilSenRegressor(BaseTransformer):
|
|
250
261
|
self
|
251
262
|
"""
|
252
263
|
self._infer_input_output_cols(dataset)
|
253
|
-
if isinstance(dataset,
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
self.
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
264
|
+
if isinstance(dataset, DataFrame):
|
265
|
+
session = dataset._session
|
266
|
+
assert session is not None # keep mypy happy
|
267
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
268
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
269
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
270
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
271
|
+
|
272
|
+
# Specify input columns so column pruning will be enforced
|
273
|
+
selected_cols = self._get_active_columns()
|
274
|
+
if len(selected_cols) > 0:
|
275
|
+
dataset = dataset.select(selected_cols)
|
276
|
+
|
277
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
|
+
|
279
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
280
|
+
if SNOWML_SPROC_ENV in os.environ:
|
281
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
282
|
+
project=_PROJECT,
|
283
|
+
subproject=_SUBPROJECT,
|
284
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TheilSenRegressor.__class__.__name__),
|
285
|
+
api_calls=[Session.call],
|
286
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
287
|
+
)
|
288
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
289
|
+
pd_df.columns = dataset.columns
|
290
|
+
dataset = pd_df
|
291
|
+
|
292
|
+
model_trainer = ModelTrainerBuilder.build(
|
293
|
+
estimator=self._sklearn_object,
|
294
|
+
dataset=dataset,
|
295
|
+
input_cols=self.input_cols,
|
296
|
+
label_cols=self.label_cols,
|
297
|
+
sample_weight_col=self.sample_weight_col,
|
298
|
+
autogenerated=self._autogenerated,
|
299
|
+
subproject=_SUBPROJECT
|
300
|
+
)
|
301
|
+
self._sklearn_object = model_trainer.train()
|
269
302
|
self._is_fitted = True
|
270
303
|
self._get_model_signatures(dataset)
|
271
304
|
return self
|
272
305
|
|
273
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
274
|
-
session = dataset._session
|
275
|
-
assert session is not None # keep mypy happy
|
276
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
277
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
278
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
279
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
280
|
-
|
281
|
-
# Specify input columns so column pruning will be enforced
|
282
|
-
selected_cols = self._get_active_columns()
|
283
|
-
if len(selected_cols) > 0:
|
284
|
-
dataset = dataset.select(selected_cols)
|
285
|
-
|
286
|
-
estimator = self._sklearn_object
|
287
|
-
assert estimator is not None # Keep mypy happy
|
288
|
-
|
289
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
290
|
-
|
291
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
292
|
-
dataset,
|
293
|
-
session,
|
294
|
-
estimator,
|
295
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
296
|
-
self.input_cols,
|
297
|
-
self.label_cols,
|
298
|
-
self.sample_weight_col,
|
299
|
-
)
|
300
|
-
|
301
306
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
302
307
|
if self._drop_input_cols:
|
303
308
|
return []
|
@@ -485,11 +490,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
485
490
|
subproject=_SUBPROJECT,
|
486
491
|
custom_tags=dict([("autogen", True)]),
|
487
492
|
)
|
488
|
-
@telemetry.add_stmt_params_to_df(
|
489
|
-
project=_PROJECT,
|
490
|
-
subproject=_SUBPROJECT,
|
491
|
-
custom_tags=dict([("autogen", True)]),
|
492
|
-
)
|
493
493
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
494
494
|
"""Predict using the linear model
|
495
495
|
For more details on this function, see [sklearn.linear_model.TheilSenRegressor.predict]
|
@@ -543,11 +543,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
543
543
|
subproject=_SUBPROJECT,
|
544
544
|
custom_tags=dict([("autogen", True)]),
|
545
545
|
)
|
546
|
-
@telemetry.add_stmt_params_to_df(
|
547
|
-
project=_PROJECT,
|
548
|
-
subproject=_SUBPROJECT,
|
549
|
-
custom_tags=dict([("autogen", True)]),
|
550
|
-
)
|
551
546
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
552
547
|
"""Method not supported for this class.
|
553
548
|
|
@@ -604,7 +599,8 @@ class TheilSenRegressor(BaseTransformer):
|
|
604
599
|
if False:
|
605
600
|
self.fit(dataset)
|
606
601
|
assert self._sklearn_object is not None
|
607
|
-
|
602
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
603
|
+
return labels
|
608
604
|
else:
|
609
605
|
raise NotImplementedError
|
610
606
|
|
@@ -640,6 +636,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
640
636
|
output_cols = []
|
641
637
|
|
642
638
|
# Make sure column names are valid snowflake identifiers.
|
639
|
+
assert output_cols is not None # Make MyPy happy
|
643
640
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
644
641
|
|
645
642
|
return rv
|
@@ -650,11 +647,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
650
647
|
subproject=_SUBPROJECT,
|
651
648
|
custom_tags=dict([("autogen", True)]),
|
652
649
|
)
|
653
|
-
@telemetry.add_stmt_params_to_df(
|
654
|
-
project=_PROJECT,
|
655
|
-
subproject=_SUBPROJECT,
|
656
|
-
custom_tags=dict([("autogen", True)]),
|
657
|
-
)
|
658
650
|
def predict_proba(
|
659
651
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
660
652
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -695,11 +687,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
695
687
|
subproject=_SUBPROJECT,
|
696
688
|
custom_tags=dict([("autogen", True)]),
|
697
689
|
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
690
|
def predict_log_proba(
|
704
691
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
705
692
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -736,16 +723,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
736
723
|
return output_df
|
737
724
|
|
738
725
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
739
|
-
@telemetry.send_api_usage_telemetry(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
|
-
@telemetry.add_stmt_params_to_df(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
726
|
def decision_function(
|
750
727
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
751
728
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -846,11 +823,6 @@ class TheilSenRegressor(BaseTransformer):
|
|
846
823
|
subproject=_SUBPROJECT,
|
847
824
|
custom_tags=dict([("autogen", True)]),
|
848
825
|
)
|
849
|
-
@telemetry.add_stmt_params_to_df(
|
850
|
-
project=_PROJECT,
|
851
|
-
subproject=_SUBPROJECT,
|
852
|
-
custom_tags=dict([("autogen", True)]),
|
853
|
-
)
|
854
826
|
def kneighbors(
|
855
827
|
self,
|
856
828
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -910,9 +882,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
910
882
|
# For classifier, the type of predict is the same as the type of label
|
911
883
|
if self._sklearn_object._estimator_type == 'classifier':
|
912
884
|
# label columns is the desired type for output
|
913
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
885
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
914
886
|
# rename the output columns
|
915
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
887
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
916
888
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
889
|
([] if self._drop_input_cols else inputs)
|
918
890
|
+ outputs)
|