snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultinomialNB(BaseTransformer):
|
57
58
|
r"""Naive Bayes classifier for multinomial models
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.MultinomialNB]
|
@@ -60,58 +61,67 @@ class MultinomialNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
alpha: float or array-like of shape (n_features,), default=1.0
|
64
|
-
Additive (Laplace/Lidstone) smoothing parameter
|
65
|
-
(set alpha=0 and force_alpha=True, for no smoothing).
|
66
|
-
|
67
|
-
force_alpha: bool, default=False
|
68
|
-
If False and alpha is less than 1e-10, it will set alpha to
|
69
|
-
1e-10. If True, alpha will remain unchanged. This may cause
|
70
|
-
numerical errors if alpha is too close to 0.
|
71
|
-
|
72
|
-
fit_prior: bool, default=True
|
73
|
-
Whether to learn class prior probabilities or not.
|
74
|
-
If false, a uniform prior will be used.
|
75
|
-
|
76
|
-
class_prior: array-like of shape (n_classes,), default=None
|
77
|
-
Prior probabilities of the classes. If specified, the priors are not
|
78
|
-
adjusted according to the data.
|
79
64
|
|
80
65
|
input_cols: Optional[Union[str, List[str]]]
|
81
66
|
A string or list of strings representing column names that contain features.
|
82
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
83
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
84
|
-
parameters are considered input columns.
|
85
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
86
72
|
label_cols: Optional[Union[str, List[str]]]
|
87
73
|
A string or list of strings representing column names that contain labels.
|
88
|
-
|
89
|
-
|
90
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
91
76
|
|
92
77
|
output_cols: Optional[Union[str, List[str]]]
|
93
78
|
A string or list of strings representing column names that will store the
|
94
79
|
output of predict and transform operations. The length of output_cols must
|
95
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
96
81
|
transformer class used.
|
97
|
-
If this parameter
|
98
|
-
|
99
|
-
|
100
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
101
91
|
|
102
92
|
sample_weight_col: Optional[str]
|
103
93
|
A string representing the column name containing the sample weights.
|
104
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
105
97
|
|
106
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
107
99
|
A string or a list of strings indicating column names to be excluded from any
|
108
100
|
operations (such as train, transform, or inference). These specified column(s)
|
109
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
110
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
111
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
112
105
|
|
113
106
|
drop_input_cols: Optional[bool], default=False
|
114
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
alpha: float or array-like of shape (n_features,), default=1.0
|
110
|
+
Additive (Laplace/Lidstone) smoothing parameter
|
111
|
+
(set alpha=0 and force_alpha=True, for no smoothing).
|
112
|
+
|
113
|
+
force_alpha: bool, default=False
|
114
|
+
If False and alpha is less than 1e-10, it will set alpha to
|
115
|
+
1e-10. If True, alpha will remain unchanged. This may cause
|
116
|
+
numerical errors if alpha is too close to 0.
|
117
|
+
|
118
|
+
fit_prior: bool, default=True
|
119
|
+
Whether to learn class prior probabilities or not.
|
120
|
+
If false, a uniform prior will be used.
|
121
|
+
|
122
|
+
class_prior: array-like of shape (n_classes,), default=None
|
123
|
+
Prior probabilities of the classes. If specified, the priors are not
|
124
|
+
adjusted according to the data.
|
115
125
|
"""
|
116
126
|
|
117
127
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -136,7 +146,7 @@ class MultinomialNB(BaseTransformer):
|
|
136
146
|
self.set_passthrough_cols(passthrough_cols)
|
137
147
|
self.set_drop_input_cols(drop_input_cols)
|
138
148
|
self.set_sample_weight_col(sample_weight_col)
|
139
|
-
deps = set(
|
149
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
140
150
|
|
141
151
|
self._deps = list(deps)
|
142
152
|
|
@@ -148,13 +158,14 @@ class MultinomialNB(BaseTransformer):
|
|
148
158
|
args=init_args,
|
149
159
|
klass=sklearn.naive_bayes.MultinomialNB
|
150
160
|
)
|
151
|
-
self._sklearn_object = sklearn.naive_bayes.MultinomialNB(
|
161
|
+
self._sklearn_object: Any = sklearn.naive_bayes.MultinomialNB(
|
152
162
|
**cleaned_up_init_args,
|
153
163
|
)
|
154
164
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
155
165
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
156
166
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
157
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
167
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
168
|
+
self._autogenerated = True
|
158
169
|
|
159
170
|
def _get_rand_id(self) -> str:
|
160
171
|
"""
|
@@ -210,54 +221,48 @@ class MultinomialNB(BaseTransformer):
|
|
210
221
|
self
|
211
222
|
"""
|
212
223
|
self._infer_input_output_cols(dataset)
|
213
|
-
if isinstance(dataset,
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
self.
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
224
|
+
if isinstance(dataset, DataFrame):
|
225
|
+
session = dataset._session
|
226
|
+
assert session is not None # keep mypy happy
|
227
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
228
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
229
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
230
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
231
|
+
|
232
|
+
# Specify input columns so column pruning will be enforced
|
233
|
+
selected_cols = self._get_active_columns()
|
234
|
+
if len(selected_cols) > 0:
|
235
|
+
dataset = dataset.select(selected_cols)
|
236
|
+
|
237
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
238
|
+
|
239
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
240
|
+
if SNOWML_SPROC_ENV in os.environ:
|
241
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
242
|
+
project=_PROJECT,
|
243
|
+
subproject=_SUBPROJECT,
|
244
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultinomialNB.__class__.__name__),
|
245
|
+
api_calls=[Session.call],
|
246
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
247
|
+
)
|
248
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
249
|
+
pd_df.columns = dataset.columns
|
250
|
+
dataset = pd_df
|
251
|
+
|
252
|
+
model_trainer = ModelTrainerBuilder.build(
|
253
|
+
estimator=self._sklearn_object,
|
254
|
+
dataset=dataset,
|
255
|
+
input_cols=self.input_cols,
|
256
|
+
label_cols=self.label_cols,
|
257
|
+
sample_weight_col=self.sample_weight_col,
|
258
|
+
autogenerated=self._autogenerated,
|
259
|
+
subproject=_SUBPROJECT
|
260
|
+
)
|
261
|
+
self._sklearn_object = model_trainer.train()
|
229
262
|
self._is_fitted = True
|
230
263
|
self._get_model_signatures(dataset)
|
231
264
|
return self
|
232
265
|
|
233
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
234
|
-
session = dataset._session
|
235
|
-
assert session is not None # keep mypy happy
|
236
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
237
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
238
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
239
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
240
|
-
|
241
|
-
# Specify input columns so column pruning will be enforced
|
242
|
-
selected_cols = self._get_active_columns()
|
243
|
-
if len(selected_cols) > 0:
|
244
|
-
dataset = dataset.select(selected_cols)
|
245
|
-
|
246
|
-
estimator = self._sklearn_object
|
247
|
-
assert estimator is not None # Keep mypy happy
|
248
|
-
|
249
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
250
|
-
|
251
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
252
|
-
dataset,
|
253
|
-
session,
|
254
|
-
estimator,
|
255
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
256
|
-
self.input_cols,
|
257
|
-
self.label_cols,
|
258
|
-
self.sample_weight_col,
|
259
|
-
)
|
260
|
-
|
261
266
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
262
267
|
if self._drop_input_cols:
|
263
268
|
return []
|
@@ -445,11 +450,6 @@ class MultinomialNB(BaseTransformer):
|
|
445
450
|
subproject=_SUBPROJECT,
|
446
451
|
custom_tags=dict([("autogen", True)]),
|
447
452
|
)
|
448
|
-
@telemetry.add_stmt_params_to_df(
|
449
|
-
project=_PROJECT,
|
450
|
-
subproject=_SUBPROJECT,
|
451
|
-
custom_tags=dict([("autogen", True)]),
|
452
|
-
)
|
453
453
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
454
454
|
"""Perform classification on an array of test vectors X
|
455
455
|
For more details on this function, see [sklearn.naive_bayes.MultinomialNB.predict]
|
@@ -503,11 +503,6 @@ class MultinomialNB(BaseTransformer):
|
|
503
503
|
subproject=_SUBPROJECT,
|
504
504
|
custom_tags=dict([("autogen", True)]),
|
505
505
|
)
|
506
|
-
@telemetry.add_stmt_params_to_df(
|
507
|
-
project=_PROJECT,
|
508
|
-
subproject=_SUBPROJECT,
|
509
|
-
custom_tags=dict([("autogen", True)]),
|
510
|
-
)
|
511
506
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
512
507
|
"""Method not supported for this class.
|
513
508
|
|
@@ -564,7 +559,8 @@ class MultinomialNB(BaseTransformer):
|
|
564
559
|
if False:
|
565
560
|
self.fit(dataset)
|
566
561
|
assert self._sklearn_object is not None
|
567
|
-
|
562
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
563
|
+
return labels
|
568
564
|
else:
|
569
565
|
raise NotImplementedError
|
570
566
|
|
@@ -600,6 +596,7 @@ class MultinomialNB(BaseTransformer):
|
|
600
596
|
output_cols = []
|
601
597
|
|
602
598
|
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
603
600
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
604
601
|
|
605
602
|
return rv
|
@@ -610,11 +607,6 @@ class MultinomialNB(BaseTransformer):
|
|
610
607
|
subproject=_SUBPROJECT,
|
611
608
|
custom_tags=dict([("autogen", True)]),
|
612
609
|
)
|
613
|
-
@telemetry.add_stmt_params_to_df(
|
614
|
-
project=_PROJECT,
|
615
|
-
subproject=_SUBPROJECT,
|
616
|
-
custom_tags=dict([("autogen", True)]),
|
617
|
-
)
|
618
610
|
def predict_proba(
|
619
611
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
620
612
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -657,11 +649,6 @@ class MultinomialNB(BaseTransformer):
|
|
657
649
|
subproject=_SUBPROJECT,
|
658
650
|
custom_tags=dict([("autogen", True)]),
|
659
651
|
)
|
660
|
-
@telemetry.add_stmt_params_to_df(
|
661
|
-
project=_PROJECT,
|
662
|
-
subproject=_SUBPROJECT,
|
663
|
-
custom_tags=dict([("autogen", True)]),
|
664
|
-
)
|
665
652
|
def predict_log_proba(
|
666
653
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
667
654
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,16 +687,6 @@ class MultinomialNB(BaseTransformer):
|
|
700
687
|
return output_df
|
701
688
|
|
702
689
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
703
|
-
@telemetry.send_api_usage_telemetry(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
690
|
def decision_function(
|
714
691
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
715
692
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -810,11 +787,6 @@ class MultinomialNB(BaseTransformer):
|
|
810
787
|
subproject=_SUBPROJECT,
|
811
788
|
custom_tags=dict([("autogen", True)]),
|
812
789
|
)
|
813
|
-
@telemetry.add_stmt_params_to_df(
|
814
|
-
project=_PROJECT,
|
815
|
-
subproject=_SUBPROJECT,
|
816
|
-
custom_tags=dict([("autogen", True)]),
|
817
|
-
)
|
818
790
|
def kneighbors(
|
819
791
|
self,
|
820
792
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -874,9 +846,9 @@ class MultinomialNB(BaseTransformer):
|
|
874
846
|
# For classifier, the type of predict is the same as the type of label
|
875
847
|
if self._sklearn_object._estimator_type == 'classifier':
|
876
848
|
# label columns is the desired type for output
|
877
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
849
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
878
850
|
# rename the output columns
|
879
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
851
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
880
852
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
881
853
|
([] if self._drop_input_cols else inputs)
|
882
854
|
+ outputs)
|