snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultinomialNB(BaseTransformer):
57
58
  r"""Naive Bayes classifier for multinomial models
58
59
  For more details on this class, see [sklearn.naive_bayes.MultinomialNB]
@@ -60,58 +61,67 @@ class MultinomialNB(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- alpha: float or array-like of shape (n_features,), default=1.0
64
- Additive (Laplace/Lidstone) smoothing parameter
65
- (set alpha=0 and force_alpha=True, for no smoothing).
66
-
67
- force_alpha: bool, default=False
68
- If False and alpha is less than 1e-10, it will set alpha to
69
- 1e-10. If True, alpha will remain unchanged. This may cause
70
- numerical errors if alpha is too close to 0.
71
-
72
- fit_prior: bool, default=True
73
- Whether to learn class prior probabilities or not.
74
- If false, a uniform prior will be used.
75
-
76
- class_prior: array-like of shape (n_classes,), default=None
77
- Prior probabilities of the classes. If specified, the priors are not
78
- adjusted according to the data.
79
64
 
80
65
  input_cols: Optional[Union[str, List[str]]]
81
66
  A string or list of strings representing column names that contain features.
82
67
  If this parameter is not specified, all columns in the input DataFrame except
83
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
84
- parameters are considered input columns.
85
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
86
72
  label_cols: Optional[Union[str, List[str]]]
87
73
  A string or list of strings representing column names that contain labels.
88
- This is a required param for estimators, as there is no way to infer these
89
- columns. If this parameter is not specified, then object is fitted without
90
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
91
76
 
92
77
  output_cols: Optional[Union[str, List[str]]]
93
78
  A string or list of strings representing column names that will store the
94
79
  output of predict and transform operations. The length of output_cols must
95
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
96
81
  transformer class used.
97
- If this parameter is not specified, output column names are derived by
98
- adding an OUTPUT_ prefix to the label column names. These inferred output
99
- column names work for estimator's predict() method, but output_cols must
100
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
101
91
 
102
92
  sample_weight_col: Optional[str]
103
93
  A string representing the column name containing the sample weights.
104
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
105
97
 
106
98
  passthrough_cols: Optional[Union[str, List[str]]]
107
99
  A string or a list of strings indicating column names to be excluded from any
108
100
  operations (such as train, transform, or inference). These specified column(s)
109
101
  will remain untouched throughout the process. This option is helpful in scenarios
110
102
  requiring automatic input_cols inference, but need to avoid using specific
111
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
112
105
 
113
106
  drop_input_cols: Optional[bool], default=False
114
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ alpha: float or array-like of shape (n_features,), default=1.0
110
+ Additive (Laplace/Lidstone) smoothing parameter
111
+ (set alpha=0 and force_alpha=True, for no smoothing).
112
+
113
+ force_alpha: bool, default=False
114
+ If False and alpha is less than 1e-10, it will set alpha to
115
+ 1e-10. If True, alpha will remain unchanged. This may cause
116
+ numerical errors if alpha is too close to 0.
117
+
118
+ fit_prior: bool, default=True
119
+ Whether to learn class prior probabilities or not.
120
+ If false, a uniform prior will be used.
121
+
122
+ class_prior: array-like of shape (n_classes,), default=None
123
+ Prior probabilities of the classes. If specified, the priors are not
124
+ adjusted according to the data.
115
125
  """
116
126
 
117
127
  def __init__( # type: ignore[no-untyped-def]
@@ -136,7 +146,7 @@ class MultinomialNB(BaseTransformer):
136
146
  self.set_passthrough_cols(passthrough_cols)
137
147
  self.set_drop_input_cols(drop_input_cols)
138
148
  self.set_sample_weight_col(sample_weight_col)
139
- deps = set(SklearnWrapperProvider().dependencies)
149
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
140
150
 
141
151
  self._deps = list(deps)
142
152
 
@@ -148,13 +158,14 @@ class MultinomialNB(BaseTransformer):
148
158
  args=init_args,
149
159
  klass=sklearn.naive_bayes.MultinomialNB
150
160
  )
151
- self._sklearn_object = sklearn.naive_bayes.MultinomialNB(
161
+ self._sklearn_object: Any = sklearn.naive_bayes.MultinomialNB(
152
162
  **cleaned_up_init_args,
153
163
  )
154
164
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
155
165
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
156
166
  self._snowpark_cols: Optional[List[str]] = self.input_cols
157
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
167
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
168
+ self._autogenerated = True
158
169
 
159
170
  def _get_rand_id(self) -> str:
160
171
  """
@@ -210,54 +221,48 @@ class MultinomialNB(BaseTransformer):
210
221
  self
211
222
  """
212
223
  self._infer_input_output_cols(dataset)
213
- if isinstance(dataset, pd.DataFrame):
214
- assert self._sklearn_object is not None # keep mypy happy
215
- self._sklearn_object = self._handlers.fit_pandas(
216
- dataset,
217
- self._sklearn_object,
218
- self.input_cols,
219
- self.label_cols,
220
- self.sample_weight_col
221
- )
222
- elif isinstance(dataset, DataFrame):
223
- self._fit_snowpark(dataset)
224
- else:
225
- raise TypeError(
226
- f"Unexpected dataset type: {type(dataset)}."
227
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
228
- )
224
+ if isinstance(dataset, DataFrame):
225
+ session = dataset._session
226
+ assert session is not None # keep mypy happy
227
+ # Validate that key package version in user workspace are supported in snowflake conda channel
228
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
229
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
230
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
231
+
232
+ # Specify input columns so column pruning will be enforced
233
+ selected_cols = self._get_active_columns()
234
+ if len(selected_cols) > 0:
235
+ dataset = dataset.select(selected_cols)
236
+
237
+ self._snowpark_cols = dataset.select(self.input_cols).columns
238
+
239
+ # If we are already in a stored procedure, no need to kick off another one.
240
+ if SNOWML_SPROC_ENV in os.environ:
241
+ statement_params = telemetry.get_function_usage_statement_params(
242
+ project=_PROJECT,
243
+ subproject=_SUBPROJECT,
244
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultinomialNB.__class__.__name__),
245
+ api_calls=[Session.call],
246
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
247
+ )
248
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
249
+ pd_df.columns = dataset.columns
250
+ dataset = pd_df
251
+
252
+ model_trainer = ModelTrainerBuilder.build(
253
+ estimator=self._sklearn_object,
254
+ dataset=dataset,
255
+ input_cols=self.input_cols,
256
+ label_cols=self.label_cols,
257
+ sample_weight_col=self.sample_weight_col,
258
+ autogenerated=self._autogenerated,
259
+ subproject=_SUBPROJECT
260
+ )
261
+ self._sklearn_object = model_trainer.train()
229
262
  self._is_fitted = True
230
263
  self._get_model_signatures(dataset)
231
264
  return self
232
265
 
233
- def _fit_snowpark(self, dataset: DataFrame) -> None:
234
- session = dataset._session
235
- assert session is not None # keep mypy happy
236
- # Validate that key package version in user workspace are supported in snowflake conda channel
237
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
238
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
239
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
240
-
241
- # Specify input columns so column pruning will be enforced
242
- selected_cols = self._get_active_columns()
243
- if len(selected_cols) > 0:
244
- dataset = dataset.select(selected_cols)
245
-
246
- estimator = self._sklearn_object
247
- assert estimator is not None # Keep mypy happy
248
-
249
- self._snowpark_cols = dataset.select(self.input_cols).columns
250
-
251
- self._sklearn_object = self._handlers.fit_snowpark(
252
- dataset,
253
- session,
254
- estimator,
255
- ["snowflake-snowpark-python"] + self._get_dependencies(),
256
- self.input_cols,
257
- self.label_cols,
258
- self.sample_weight_col,
259
- )
260
-
261
266
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
262
267
  if self._drop_input_cols:
263
268
  return []
@@ -445,11 +450,6 @@ class MultinomialNB(BaseTransformer):
445
450
  subproject=_SUBPROJECT,
446
451
  custom_tags=dict([("autogen", True)]),
447
452
  )
448
- @telemetry.add_stmt_params_to_df(
449
- project=_PROJECT,
450
- subproject=_SUBPROJECT,
451
- custom_tags=dict([("autogen", True)]),
452
- )
453
453
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
454
454
  """Perform classification on an array of test vectors X
455
455
  For more details on this function, see [sklearn.naive_bayes.MultinomialNB.predict]
@@ -503,11 +503,6 @@ class MultinomialNB(BaseTransformer):
503
503
  subproject=_SUBPROJECT,
504
504
  custom_tags=dict([("autogen", True)]),
505
505
  )
506
- @telemetry.add_stmt_params_to_df(
507
- project=_PROJECT,
508
- subproject=_SUBPROJECT,
509
- custom_tags=dict([("autogen", True)]),
510
- )
511
506
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
512
507
  """Method not supported for this class.
513
508
 
@@ -564,7 +559,8 @@ class MultinomialNB(BaseTransformer):
564
559
  if False:
565
560
  self.fit(dataset)
566
561
  assert self._sklearn_object is not None
567
- return self._sklearn_object.labels_
562
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
563
+ return labels
568
564
  else:
569
565
  raise NotImplementedError
570
566
 
@@ -600,6 +596,7 @@ class MultinomialNB(BaseTransformer):
600
596
  output_cols = []
601
597
 
602
598
  # Make sure column names are valid snowflake identifiers.
599
+ assert output_cols is not None # Make MyPy happy
603
600
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
604
601
 
605
602
  return rv
@@ -610,11 +607,6 @@ class MultinomialNB(BaseTransformer):
610
607
  subproject=_SUBPROJECT,
611
608
  custom_tags=dict([("autogen", True)]),
612
609
  )
613
- @telemetry.add_stmt_params_to_df(
614
- project=_PROJECT,
615
- subproject=_SUBPROJECT,
616
- custom_tags=dict([("autogen", True)]),
617
- )
618
610
  def predict_proba(
619
611
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
620
612
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -657,11 +649,6 @@ class MultinomialNB(BaseTransformer):
657
649
  subproject=_SUBPROJECT,
658
650
  custom_tags=dict([("autogen", True)]),
659
651
  )
660
- @telemetry.add_stmt_params_to_df(
661
- project=_PROJECT,
662
- subproject=_SUBPROJECT,
663
- custom_tags=dict([("autogen", True)]),
664
- )
665
652
  def predict_log_proba(
666
653
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
667
654
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -700,16 +687,6 @@ class MultinomialNB(BaseTransformer):
700
687
  return output_df
701
688
 
702
689
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
703
- @telemetry.send_api_usage_telemetry(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
690
  def decision_function(
714
691
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
715
692
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -810,11 +787,6 @@ class MultinomialNB(BaseTransformer):
810
787
  subproject=_SUBPROJECT,
811
788
  custom_tags=dict([("autogen", True)]),
812
789
  )
813
- @telemetry.add_stmt_params_to_df(
814
- project=_PROJECT,
815
- subproject=_SUBPROJECT,
816
- custom_tags=dict([("autogen", True)]),
817
- )
818
790
  def kneighbors(
819
791
  self,
820
792
  dataset: Union[DataFrame, pd.DataFrame],
@@ -874,9 +846,9 @@ class MultinomialNB(BaseTransformer):
874
846
  # For classifier, the type of predict is the same as the type of label
875
847
  if self._sklearn_object._estimator_type == 'classifier':
876
848
  # label columns is the desired type for output
877
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
849
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
878
850
  # rename the output columns
879
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
851
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
880
852
  self._model_signature_dict["predict"] = ModelSignature(inputs,
881
853
  ([] if self._drop_input_cols else inputs)
882
854
  + outputs)