snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRegressor(BaseTransformer):
|
56
57
|
r"""Implementation of the scikit-learn API for XGBoost regression
|
57
58
|
For more details on this class, see [xgboost.XGBRegressor]
|
@@ -60,7 +61,51 @@ class XGBRegressor(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of gradient boosted trees. Equivalent to number of boosting
|
65
110
|
rounds.
|
66
111
|
|
@@ -268,42 +313,6 @@ class XGBRegressor(BaseTransformer):
|
|
268
313
|
The value of the gradient for each sample point.
|
269
314
|
hess: array_like of shape [n_samples]
|
270
315
|
The value of the second derivative for each sample point
|
271
|
-
|
272
|
-
input_cols: Optional[Union[str, List[str]]]
|
273
|
-
A string or list of strings representing column names that contain features.
|
274
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
275
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
276
|
-
parameters are considered input columns.
|
277
|
-
|
278
|
-
label_cols: Optional[Union[str, List[str]]]
|
279
|
-
A string or list of strings representing column names that contain labels.
|
280
|
-
This is a required param for estimators, as there is no way to infer these
|
281
|
-
columns. If this parameter is not specified, then object is fitted without
|
282
|
-
labels (like a transformer).
|
283
|
-
|
284
|
-
output_cols: Optional[Union[str, List[str]]]
|
285
|
-
A string or list of strings representing column names that will store the
|
286
|
-
output of predict and transform operations. The length of output_cols must
|
287
|
-
match the expected number of output columns from the specific estimator or
|
288
|
-
transformer class used.
|
289
|
-
If this parameter is not specified, output column names are derived by
|
290
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
291
|
-
column names work for estimator's predict() method, but output_cols must
|
292
|
-
be set explicitly for transformers.
|
293
|
-
|
294
|
-
sample_weight_col: Optional[str]
|
295
|
-
A string representing the column name containing the sample weights.
|
296
|
-
This argument is only required when working with weighted datasets.
|
297
|
-
|
298
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
299
|
-
A string or a list of strings indicating column names to be excluded from any
|
300
|
-
operations (such as train, transform, or inference). These specified column(s)
|
301
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
302
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
303
|
-
columns, like index columns, during training or inference.
|
304
|
-
|
305
|
-
drop_input_cols: Optional[bool], default=False
|
306
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
307
316
|
"""
|
308
317
|
|
309
318
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -326,7 +335,7 @@ class XGBRegressor(BaseTransformer):
|
|
326
335
|
self.set_passthrough_cols(passthrough_cols)
|
327
336
|
self.set_drop_input_cols(drop_input_cols)
|
328
337
|
self.set_sample_weight_col(sample_weight_col)
|
329
|
-
deps = set(
|
338
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
330
339
|
|
331
340
|
self._deps = list(deps)
|
332
341
|
|
@@ -335,14 +344,15 @@ class XGBRegressor(BaseTransformer):
|
|
335
344
|
args=init_args,
|
336
345
|
klass=xgboost.XGBRegressor
|
337
346
|
)
|
338
|
-
self._sklearn_object = xgboost.XGBRegressor(
|
347
|
+
self._sklearn_object: Any = xgboost.XGBRegressor(
|
339
348
|
**cleaned_up_init_args,
|
340
349
|
**kwargs,
|
341
350
|
)
|
342
351
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
343
352
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
344
353
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
345
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
354
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
355
|
+
self._autogenerated = True
|
346
356
|
|
347
357
|
def _get_rand_id(self) -> str:
|
348
358
|
"""
|
@@ -398,54 +408,48 @@ class XGBRegressor(BaseTransformer):
|
|
398
408
|
self
|
399
409
|
"""
|
400
410
|
self._infer_input_output_cols(dataset)
|
401
|
-
if isinstance(dataset,
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
self.
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
411
|
+
if isinstance(dataset, DataFrame):
|
412
|
+
session = dataset._session
|
413
|
+
assert session is not None # keep mypy happy
|
414
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
415
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
416
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
417
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
418
|
+
|
419
|
+
# Specify input columns so column pruning will be enforced
|
420
|
+
selected_cols = self._get_active_columns()
|
421
|
+
if len(selected_cols) > 0:
|
422
|
+
dataset = dataset.select(selected_cols)
|
423
|
+
|
424
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
425
|
+
|
426
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
427
|
+
if SNOWML_SPROC_ENV in os.environ:
|
428
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
429
|
+
project=_PROJECT,
|
430
|
+
subproject=_SUBPROJECT,
|
431
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRegressor.__class__.__name__),
|
432
|
+
api_calls=[Session.call],
|
433
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
434
|
+
)
|
435
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
436
|
+
pd_df.columns = dataset.columns
|
437
|
+
dataset = pd_df
|
438
|
+
|
439
|
+
model_trainer = ModelTrainerBuilder.build(
|
440
|
+
estimator=self._sklearn_object,
|
441
|
+
dataset=dataset,
|
442
|
+
input_cols=self.input_cols,
|
443
|
+
label_cols=self.label_cols,
|
444
|
+
sample_weight_col=self.sample_weight_col,
|
445
|
+
autogenerated=self._autogenerated,
|
446
|
+
subproject=_SUBPROJECT
|
447
|
+
)
|
448
|
+
self._sklearn_object = model_trainer.train()
|
417
449
|
self._is_fitted = True
|
418
450
|
self._get_model_signatures(dataset)
|
419
451
|
return self
|
420
452
|
|
421
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
422
|
-
session = dataset._session
|
423
|
-
assert session is not None # keep mypy happy
|
424
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
425
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
426
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
427
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
428
|
-
|
429
|
-
# Specify input columns so column pruning will be enforced
|
430
|
-
selected_cols = self._get_active_columns()
|
431
|
-
if len(selected_cols) > 0:
|
432
|
-
dataset = dataset.select(selected_cols)
|
433
|
-
|
434
|
-
estimator = self._sklearn_object
|
435
|
-
assert estimator is not None # Keep mypy happy
|
436
|
-
|
437
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
438
|
-
|
439
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
440
|
-
dataset,
|
441
|
-
session,
|
442
|
-
estimator,
|
443
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
444
|
-
self.input_cols,
|
445
|
-
self.label_cols,
|
446
|
-
self.sample_weight_col,
|
447
|
-
)
|
448
|
-
|
449
453
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
450
454
|
if self._drop_input_cols:
|
451
455
|
return []
|
@@ -633,11 +637,6 @@ class XGBRegressor(BaseTransformer):
|
|
633
637
|
subproject=_SUBPROJECT,
|
634
638
|
custom_tags=dict([("autogen", True)]),
|
635
639
|
)
|
636
|
-
@telemetry.add_stmt_params_to_df(
|
637
|
-
project=_PROJECT,
|
638
|
-
subproject=_SUBPROJECT,
|
639
|
-
custom_tags=dict([("autogen", True)]),
|
640
|
-
)
|
641
640
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
642
641
|
"""Predict with `X`
|
643
642
|
For more details on this function, see [xgboost.XGBRegressor.predict]
|
@@ -691,11 +690,6 @@ class XGBRegressor(BaseTransformer):
|
|
691
690
|
subproject=_SUBPROJECT,
|
692
691
|
custom_tags=dict([("autogen", True)]),
|
693
692
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
693
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
700
694
|
"""Method not supported for this class.
|
701
695
|
|
@@ -752,7 +746,8 @@ class XGBRegressor(BaseTransformer):
|
|
752
746
|
if False:
|
753
747
|
self.fit(dataset)
|
754
748
|
assert self._sklearn_object is not None
|
755
|
-
|
749
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
750
|
+
return labels
|
756
751
|
else:
|
757
752
|
raise NotImplementedError
|
758
753
|
|
@@ -788,6 +783,7 @@ class XGBRegressor(BaseTransformer):
|
|
788
783
|
output_cols = []
|
789
784
|
|
790
785
|
# Make sure column names are valid snowflake identifiers.
|
786
|
+
assert output_cols is not None # Make MyPy happy
|
791
787
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
792
788
|
|
793
789
|
return rv
|
@@ -798,11 +794,6 @@ class XGBRegressor(BaseTransformer):
|
|
798
794
|
subproject=_SUBPROJECT,
|
799
795
|
custom_tags=dict([("autogen", True)]),
|
800
796
|
)
|
801
|
-
@telemetry.add_stmt_params_to_df(
|
802
|
-
project=_PROJECT,
|
803
|
-
subproject=_SUBPROJECT,
|
804
|
-
custom_tags=dict([("autogen", True)]),
|
805
|
-
)
|
806
797
|
def predict_proba(
|
807
798
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
808
799
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,11 +834,6 @@ class XGBRegressor(BaseTransformer):
|
|
843
834
|
subproject=_SUBPROJECT,
|
844
835
|
custom_tags=dict([("autogen", True)]),
|
845
836
|
)
|
846
|
-
@telemetry.add_stmt_params_to_df(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
837
|
def predict_log_proba(
|
852
838
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
853
839
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -884,16 +870,6 @@ class XGBRegressor(BaseTransformer):
|
|
884
870
|
return output_df
|
885
871
|
|
886
872
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
887
|
-
@telemetry.send_api_usage_telemetry(
|
888
|
-
project=_PROJECT,
|
889
|
-
subproject=_SUBPROJECT,
|
890
|
-
custom_tags=dict([("autogen", True)]),
|
891
|
-
)
|
892
|
-
@telemetry.add_stmt_params_to_df(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
873
|
def decision_function(
|
898
874
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
899
875
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -994,11 +970,6 @@ class XGBRegressor(BaseTransformer):
|
|
994
970
|
subproject=_SUBPROJECT,
|
995
971
|
custom_tags=dict([("autogen", True)]),
|
996
972
|
)
|
997
|
-
@telemetry.add_stmt_params_to_df(
|
998
|
-
project=_PROJECT,
|
999
|
-
subproject=_SUBPROJECT,
|
1000
|
-
custom_tags=dict([("autogen", True)]),
|
1001
|
-
)
|
1002
973
|
def kneighbors(
|
1003
974
|
self,
|
1004
975
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1058,9 +1029,9 @@ class XGBRegressor(BaseTransformer):
|
|
1058
1029
|
# For classifier, the type of predict is the same as the type of label
|
1059
1030
|
if self._sklearn_object._estimator_type == 'classifier':
|
1060
1031
|
# label columns is the desired type for output
|
1061
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1032
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1062
1033
|
# rename the output columns
|
1063
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1034
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1064
1035
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1065
1036
|
([] if self._drop_input_cols else inputs)
|
1066
1037
|
+ outputs)
|