snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class XGBRegressor(BaseTransformer):
56
57
  r"""Implementation of the scikit-learn API for XGBoost regression
57
58
  For more details on this class, see [xgboost.XGBRegressor]
@@ -60,7 +61,51 @@ class XGBRegressor(BaseTransformer):
60
61
  Parameters
61
62
  ----------
62
63
 
63
- n_estimators: int
64
+ input_cols: Optional[Union[str, List[str]]]
65
+ A string or list of strings representing column names that contain features.
66
+ If this parameter is not specified, all columns in the input DataFrame except
67
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
71
+ label_cols: Optional[Union[str, List[str]]]
72
+ A string or list of strings representing column names that contain labels.
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
108
+ n_estimators: int
64
109
  Number of gradient boosted trees. Equivalent to number of boosting
65
110
  rounds.
66
111
 
@@ -268,42 +313,6 @@ class XGBRegressor(BaseTransformer):
268
313
  The value of the gradient for each sample point.
269
314
  hess: array_like of shape [n_samples]
270
315
  The value of the second derivative for each sample point
271
-
272
- input_cols: Optional[Union[str, List[str]]]
273
- A string or list of strings representing column names that contain features.
274
- If this parameter is not specified, all columns in the input DataFrame except
275
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
276
- parameters are considered input columns.
277
-
278
- label_cols: Optional[Union[str, List[str]]]
279
- A string or list of strings representing column names that contain labels.
280
- This is a required param for estimators, as there is no way to infer these
281
- columns. If this parameter is not specified, then object is fitted without
282
- labels (like a transformer).
283
-
284
- output_cols: Optional[Union[str, List[str]]]
285
- A string or list of strings representing column names that will store the
286
- output of predict and transform operations. The length of output_cols must
287
- match the expected number of output columns from the specific estimator or
288
- transformer class used.
289
- If this parameter is not specified, output column names are derived by
290
- adding an OUTPUT_ prefix to the label column names. These inferred output
291
- column names work for estimator's predict() method, but output_cols must
292
- be set explicitly for transformers.
293
-
294
- sample_weight_col: Optional[str]
295
- A string representing the column name containing the sample weights.
296
- This argument is only required when working with weighted datasets.
297
-
298
- passthrough_cols: Optional[Union[str, List[str]]]
299
- A string or a list of strings indicating column names to be excluded from any
300
- operations (such as train, transform, or inference). These specified column(s)
301
- will remain untouched throughout the process. This option is helpful in scenarios
302
- requiring automatic input_cols inference, but need to avoid using specific
303
- columns, like index columns, during training or inference.
304
-
305
- drop_input_cols: Optional[bool], default=False
306
- If set, the response of predict(), transform() methods will not contain input columns.
307
316
  """
308
317
 
309
318
  def __init__( # type: ignore[no-untyped-def]
@@ -326,7 +335,7 @@ class XGBRegressor(BaseTransformer):
326
335
  self.set_passthrough_cols(passthrough_cols)
327
336
  self.set_drop_input_cols(drop_input_cols)
328
337
  self.set_sample_weight_col(sample_weight_col)
329
- deps = set(XGBoostWrapperProvider().dependencies)
338
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
330
339
 
331
340
  self._deps = list(deps)
332
341
 
@@ -335,14 +344,15 @@ class XGBRegressor(BaseTransformer):
335
344
  args=init_args,
336
345
  klass=xgboost.XGBRegressor
337
346
  )
338
- self._sklearn_object = xgboost.XGBRegressor(
347
+ self._sklearn_object: Any = xgboost.XGBRegressor(
339
348
  **cleaned_up_init_args,
340
349
  **kwargs,
341
350
  )
342
351
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
343
352
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
344
353
  self._snowpark_cols: Optional[List[str]] = self.input_cols
345
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=XGBoostWrapperProvider())
354
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
355
+ self._autogenerated = True
346
356
 
347
357
  def _get_rand_id(self) -> str:
348
358
  """
@@ -398,54 +408,48 @@ class XGBRegressor(BaseTransformer):
398
408
  self
399
409
  """
400
410
  self._infer_input_output_cols(dataset)
401
- if isinstance(dataset, pd.DataFrame):
402
- assert self._sklearn_object is not None # keep mypy happy
403
- self._sklearn_object = self._handlers.fit_pandas(
404
- dataset,
405
- self._sklearn_object,
406
- self.input_cols,
407
- self.label_cols,
408
- self.sample_weight_col
409
- )
410
- elif isinstance(dataset, DataFrame):
411
- self._fit_snowpark(dataset)
412
- else:
413
- raise TypeError(
414
- f"Unexpected dataset type: {type(dataset)}."
415
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
416
- )
411
+ if isinstance(dataset, DataFrame):
412
+ session = dataset._session
413
+ assert session is not None # keep mypy happy
414
+ # Validate that key package version in user workspace are supported in snowflake conda channel
415
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
416
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
417
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
418
+
419
+ # Specify input columns so column pruning will be enforced
420
+ selected_cols = self._get_active_columns()
421
+ if len(selected_cols) > 0:
422
+ dataset = dataset.select(selected_cols)
423
+
424
+ self._snowpark_cols = dataset.select(self.input_cols).columns
425
+
426
+ # If we are already in a stored procedure, no need to kick off another one.
427
+ if SNOWML_SPROC_ENV in os.environ:
428
+ statement_params = telemetry.get_function_usage_statement_params(
429
+ project=_PROJECT,
430
+ subproject=_SUBPROJECT,
431
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRegressor.__class__.__name__),
432
+ api_calls=[Session.call],
433
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
434
+ )
435
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
436
+ pd_df.columns = dataset.columns
437
+ dataset = pd_df
438
+
439
+ model_trainer = ModelTrainerBuilder.build(
440
+ estimator=self._sklearn_object,
441
+ dataset=dataset,
442
+ input_cols=self.input_cols,
443
+ label_cols=self.label_cols,
444
+ sample_weight_col=self.sample_weight_col,
445
+ autogenerated=self._autogenerated,
446
+ subproject=_SUBPROJECT
447
+ )
448
+ self._sklearn_object = model_trainer.train()
417
449
  self._is_fitted = True
418
450
  self._get_model_signatures(dataset)
419
451
  return self
420
452
 
421
- def _fit_snowpark(self, dataset: DataFrame) -> None:
422
- session = dataset._session
423
- assert session is not None # keep mypy happy
424
- # Validate that key package version in user workspace are supported in snowflake conda channel
425
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
426
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
427
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
428
-
429
- # Specify input columns so column pruning will be enforced
430
- selected_cols = self._get_active_columns()
431
- if len(selected_cols) > 0:
432
- dataset = dataset.select(selected_cols)
433
-
434
- estimator = self._sklearn_object
435
- assert estimator is not None # Keep mypy happy
436
-
437
- self._snowpark_cols = dataset.select(self.input_cols).columns
438
-
439
- self._sklearn_object = self._handlers.fit_snowpark(
440
- dataset,
441
- session,
442
- estimator,
443
- ["snowflake-snowpark-python"] + self._get_dependencies(),
444
- self.input_cols,
445
- self.label_cols,
446
- self.sample_weight_col,
447
- )
448
-
449
453
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
450
454
  if self._drop_input_cols:
451
455
  return []
@@ -633,11 +637,6 @@ class XGBRegressor(BaseTransformer):
633
637
  subproject=_SUBPROJECT,
634
638
  custom_tags=dict([("autogen", True)]),
635
639
  )
636
- @telemetry.add_stmt_params_to_df(
637
- project=_PROJECT,
638
- subproject=_SUBPROJECT,
639
- custom_tags=dict([("autogen", True)]),
640
- )
641
640
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
642
641
  """Predict with `X`
643
642
  For more details on this function, see [xgboost.XGBRegressor.predict]
@@ -691,11 +690,6 @@ class XGBRegressor(BaseTransformer):
691
690
  subproject=_SUBPROJECT,
692
691
  custom_tags=dict([("autogen", True)]),
693
692
  )
694
- @telemetry.add_stmt_params_to_df(
695
- project=_PROJECT,
696
- subproject=_SUBPROJECT,
697
- custom_tags=dict([("autogen", True)]),
698
- )
699
693
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
700
694
  """Method not supported for this class.
701
695
 
@@ -752,7 +746,8 @@ class XGBRegressor(BaseTransformer):
752
746
  if False:
753
747
  self.fit(dataset)
754
748
  assert self._sklearn_object is not None
755
- return self._sklearn_object.labels_
749
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
750
+ return labels
756
751
  else:
757
752
  raise NotImplementedError
758
753
 
@@ -788,6 +783,7 @@ class XGBRegressor(BaseTransformer):
788
783
  output_cols = []
789
784
 
790
785
  # Make sure column names are valid snowflake identifiers.
786
+ assert output_cols is not None # Make MyPy happy
791
787
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
792
788
 
793
789
  return rv
@@ -798,11 +794,6 @@ class XGBRegressor(BaseTransformer):
798
794
  subproject=_SUBPROJECT,
799
795
  custom_tags=dict([("autogen", True)]),
800
796
  )
801
- @telemetry.add_stmt_params_to_df(
802
- project=_PROJECT,
803
- subproject=_SUBPROJECT,
804
- custom_tags=dict([("autogen", True)]),
805
- )
806
797
  def predict_proba(
807
798
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
808
799
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -843,11 +834,6 @@ class XGBRegressor(BaseTransformer):
843
834
  subproject=_SUBPROJECT,
844
835
  custom_tags=dict([("autogen", True)]),
845
836
  )
846
- @telemetry.add_stmt_params_to_df(
847
- project=_PROJECT,
848
- subproject=_SUBPROJECT,
849
- custom_tags=dict([("autogen", True)]),
850
- )
851
837
  def predict_log_proba(
852
838
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
853
839
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -884,16 +870,6 @@ class XGBRegressor(BaseTransformer):
884
870
  return output_df
885
871
 
886
872
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
887
- @telemetry.send_api_usage_telemetry(
888
- project=_PROJECT,
889
- subproject=_SUBPROJECT,
890
- custom_tags=dict([("autogen", True)]),
891
- )
892
- @telemetry.add_stmt_params_to_df(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
873
  def decision_function(
898
874
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
899
875
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -994,11 +970,6 @@ class XGBRegressor(BaseTransformer):
994
970
  subproject=_SUBPROJECT,
995
971
  custom_tags=dict([("autogen", True)]),
996
972
  )
997
- @telemetry.add_stmt_params_to_df(
998
- project=_PROJECT,
999
- subproject=_SUBPROJECT,
1000
- custom_tags=dict([("autogen", True)]),
1001
- )
1002
973
  def kneighbors(
1003
974
  self,
1004
975
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1058,9 +1029,9 @@ class XGBRegressor(BaseTransformer):
1058
1029
  # For classifier, the type of predict is the same as the type of label
1059
1030
  if self._sklearn_object._estimator_type == 'classifier':
1060
1031
  # label columns is the desired type for output
1061
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1032
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1062
1033
  # rename the output columns
1063
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1034
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1064
1035
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1065
1036
  ([] if self._drop_input_cols else inputs)
1066
1037
  + outputs)