snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -1,11 +1,11 @@
1
- from typing import Dict, Iterable, List, Optional, Set, Union
1
+ from typing import Any, Dict, Iterable, List, Optional, Set, Union
2
2
  from uuid import uuid4
3
3
 
4
+ import cloudpickle as cp
4
5
  import numpy as np
5
6
  import pandas as pd
6
7
  import sklearn
7
8
  import sklearn.model_selection
8
- from sklearn.model_selection import ParameterSampler
9
9
  from sklearn.utils.metaestimators import available_if
10
10
 
11
11
  from snowflake.ml._internal import telemetry
@@ -22,13 +22,12 @@ from snowflake.ml.model.model_signature import (
22
22
  from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
23
23
  from snowflake.ml.modeling._internal.estimator_utils import (
24
24
  gather_dependencies,
25
- is_single_node,
26
25
  original_estimator_has_callable,
27
26
  transform_snowml_obj_to_sklearn_obj,
28
27
  validate_sklearn_args,
29
28
  )
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.snowpark_handlers import (
31
- SklearnModelSelectionWrapperProvider,
32
31
  SnowparkHandlers as HandlersImpl,
33
32
  )
34
33
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -50,13 +49,13 @@ class RandomizedSearchCV(BaseTransformer):
50
49
 
51
50
  Parameters
52
51
  ----------
53
- estimator : estimator object
52
+ estimator: estimator object
54
53
  An object of that type is instantiated for each grid point.
55
54
  This is assumed to implement the scikit-learn estimator interface.
56
55
  Either estimator needs to provide a ``score`` function,
57
56
  or ``scoring`` must be passed.
58
57
 
59
- param_distributions : dict or list of dicts
58
+ param_distributions: dict or list of dicts
60
59
  Dictionary with parameters names (`str`) as keys and distributions
61
60
  or lists of parameters to try. Distributions must provide a ``rvs``
62
61
  method for sampling (such as those from scipy.stats.distributions).
@@ -64,11 +63,46 @@ class RandomizedSearchCV(BaseTransformer):
64
63
  If a list of dicts is given, first a dict is sampled uniformly, and
65
64
  then a parameter is sampled using that dict as above.
66
65
 
67
- n_iter : int, default=10
66
+ input_cols: Optional[Union[str, List[str]]]
67
+ A string or list of strings representing column names that contain features.
68
+ If this parameter is not specified, all columns in the input DataFrame except
69
+ the columns specified by label_cols and sample-weight_col parameters are
70
+ considered input columns.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ This is a required param for estimators, as there is no way to infer these
75
+ columns. If this parameter is not specified, then object is fitted without
76
+ labels(Like a transformer).
77
+
78
+ output_cols: Optional[Union[str, List[str]]]
79
+ A string or list of strings representing column names that will store the
80
+ output of predict and transform operations. The length of output_cols mus
81
+ match the expected number of output columns from the specific estimator or
82
+ transformer class used.
83
+ If this parameter is not specified, output column names are derived by
84
+ adding an OUTPUT_ prefix to the label column names. These inferred output
85
+ column names work for estimator's predict() method, but output_cols must
86
+ be set explicitly for transformers.
87
+
88
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
89
+ operations (such as train, transform, or inference). These specified column(s)
90
+ will remain untouched throughout the process. This option is helpful in scenarios
91
+ requiring automatic input_cols inference, but need to avoid using specific
92
+ columns, like index columns, during training or inference.
93
+
94
+ sample_weight_col: Optional[str]
95
+ A string representing the column name containing the examples’ weights.
96
+ This argument is only required when working with weighted datasets.
97
+
98
+ drop_input_cols: Optional[bool], default=False
99
+ If set, the response of predict(), transform() methods will not contain input columns.
100
+
101
+ n_iter: int, default=10
68
102
  Number of parameter settings that are sampled. n_iter trades
69
103
  off runtime vs quality of the solution.
70
104
 
71
- scoring : str, callable, list, tuple or dict, default=None
105
+ scoring: str, callable, list, tuple or dict, default=None
72
106
  Strategy to evaluate the performance of the cross-validated model on
73
107
  the test set.
74
108
 
@@ -88,13 +122,13 @@ class RandomizedSearchCV(BaseTransformer):
88
122
 
89
123
  If None, the estimator's score method is used.
90
124
 
91
- n_jobs : int, default=None
125
+ n_jobs: int, default=None
92
126
  Number of jobs to run in parallel.
93
127
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
94
128
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
95
129
  for more details.
96
130
 
97
- refit : bool, str, or callable, default=True
131
+ refit: bool, str, or callable, default=True
98
132
  Refit an estimator using the best found parameters on the whole
99
133
  dataset.
100
134
 
@@ -121,7 +155,7 @@ class RandomizedSearchCV(BaseTransformer):
121
155
  See ``scoring`` parameter to know more about multiple metric
122
156
  evaluation.
123
157
 
124
- cv : int, cross-validation generator or an iterable, default=None
158
+ cv: int, cross-validation generator or an iterable, default=None
125
159
  Determines the cross-validation splitting strategy.
126
160
  Possible inputs for cv are:
127
161
 
@@ -138,7 +172,7 @@ class RandomizedSearchCV(BaseTransformer):
138
172
  Refer :ref:`User Guide <cross_validation>` for the various
139
173
  cross-validation strategies that can be used here.
140
174
 
141
- verbose : int
175
+ verbose: int
142
176
  Controls the verbosity: the higher, the more messages.
143
177
 
144
178
  - >1 : the computation time for each fold and parameter candidate is
@@ -147,7 +181,7 @@ class RandomizedSearchCV(BaseTransformer):
147
181
  - >3 : the fold and candidate parameter indexes are also displayed
148
182
  together with the starting time of the computation.
149
183
 
150
- pre_dispatch : int, or str, default='2*n_jobs'
184
+ pre_dispatch: int, or str, default='2*n_jobs'
151
185
  Controls the number of jobs that get dispatched during parallel
152
186
  execution. Reducing this number can be useful to avoid an
153
187
  explosion of memory consumption when more jobs get dispatched
@@ -164,20 +198,20 @@ class RandomizedSearchCV(BaseTransformer):
164
198
  - A str, giving an expression as a function of n_jobs,
165
199
  as in '2*n_jobs'
166
200
 
167
- random_state : int, RandomState instance or None, default=None
201
+ random_state: int, RandomState instance or None, default=None
168
202
  Pseudo random number generator state used for random uniform sampling
169
203
  from lists of possible values instead of scipy.stats distributions.
170
204
  Pass an int for reproducible output across multiple
171
205
  function calls.
172
206
  See :term:`Glossary <random_state>`.
173
207
 
174
- error_score : 'raise' or numeric, default=np.nan
208
+ error_score: 'raise' or numeric, default=np.nan
175
209
  Value to assign to the score if an error occurs in estimator fitting.
176
210
  If set to 'raise', the error is raised. If a numeric value is given,
177
211
  FitFailedWarning is raised. This parameter does not affect the refit
178
212
  step, which will always raise the error.
179
213
 
180
- return_train_score : bool, default=False
214
+ return_train_score: bool, default=False
181
215
  If ``False``, the ``cv_results_`` attribute will not include training
182
216
  scores.
183
217
  Computing training scores is used to get insights on how different
@@ -185,41 +219,6 @@ class RandomizedSearchCV(BaseTransformer):
185
219
  However computing the scores on the training set can be computationally
186
220
  expensive and is not strictly required to select the parameters that
187
221
  yield the best generalization performance.
188
-
189
- input_cols : Optional[Union[str, List[str]]]
190
- A string or list of strings representing column names that contain features.
191
- If this parameter is not specified, all columns in the input DataFrame except
192
- the columns specified by label_cols and sample-weight_col parameters are
193
- considered input columns.
194
-
195
- label_cols : Optional[Union[str, List[str]]]
196
- A string or list of strings representing column names that contain labels.
197
- This is a required param for estimators, as there is no way to infer these
198
- columns. If this parameter is not specified, then object is fitted without
199
- labels(Like a transformer).
200
-
201
- output_cols: Optional[Union[str, List[str]]]
202
- A string or list of strings representing column names that will store the
203
- output of predict and transform operations. The length of output_cols mus
204
- match the expected number of output columns from the specific estimator or
205
- transformer class used.
206
- If this parameter is not specified, output column names are derived by
207
- adding an OUTPUT_ prefix to the label column names. These inferred output
208
- column names work for estimator's predict() method, but output_cols must
209
- be set explicitly for transformers.
210
-
211
- passthrough_cols: A string or a list of strings indicating column names to be excluded from any
212
- operations (such as train, transform, or inference). These specified column(s)
213
- will remain untouched throughout the process. This option is helpful in scenarios
214
- requiring automatic input_cols inference, but need to avoid using specific
215
- columns, like index columns, during training or inference.
216
-
217
- sample_weight_col: Optional[str]
218
- A string representing the column name containing the examples’ weights.
219
- This argument is only required when working with weighted datasets.
220
-
221
- drop_input_cols: Optional[bool], default=False
222
- If set, the response of predict(), transform() methods will not contain input columns.
223
222
  """
224
223
  _ENABLE_DISTRIBUTED = True
225
224
 
@@ -246,7 +245,11 @@ class RandomizedSearchCV(BaseTransformer):
246
245
  sample_weight_col: Optional[str] = None,
247
246
  ) -> None:
248
247
  super().__init__()
249
- deps: Set[str] = set(SklearnModelSelectionWrapperProvider().dependencies)
248
+ deps: Set[str] = {
249
+ f"numpy=={np.__version__}",
250
+ f"scikit-learn=={sklearn.__version__}",
251
+ f"cloudpickle=={cp.__version__}",
252
+ }
250
253
  deps = deps | gather_dependencies(estimator)
251
254
  self._deps = list(deps)
252
255
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -265,7 +268,7 @@ class RandomizedSearchCV(BaseTransformer):
265
268
  "return_train_score": (return_train_score, False, False),
266
269
  }
267
270
  cleaned_up_init_args = validate_sklearn_args(args=init_args, klass=sklearn.model_selection.RandomizedSearchCV)
268
- self._sklearn_object = sklearn.model_selection.RandomizedSearchCV(
271
+ self._sklearn_object: Any = sklearn.model_selection.RandomizedSearchCV(
269
272
  **cleaned_up_init_args,
270
273
  )
271
274
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
@@ -278,7 +281,6 @@ class RandomizedSearchCV(BaseTransformer):
278
281
  self._handlers: CVHandlers = HandlersImpl(
279
282
  class_name=self.__class__.__name__,
280
283
  subproject=_SUBPROJECT,
281
- wrapper_provider=SklearnModelSelectionWrapperProvider(),
282
284
  )
283
285
 
284
286
  def _get_rand_id(self) -> str:
@@ -306,10 +308,6 @@ class RandomizedSearchCV(BaseTransformer):
306
308
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.fit]
307
309
  (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV.fit)
308
310
 
309
-
310
- Raises:
311
- TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
312
-
313
311
  Args:
314
312
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
315
313
  Snowpark or Pandas DataFrame.
@@ -318,74 +316,37 @@ class RandomizedSearchCV(BaseTransformer):
318
316
  self
319
317
  """
320
318
  self._infer_input_output_cols(dataset)
321
- if isinstance(dataset, pd.DataFrame):
322
- self._estimator = self._handlers.fit_pandas(
323
- dataset, self._sklearn_object, self.input_cols, self.label_cols, self.sample_weight_col
324
- )
325
- elif isinstance(dataset, DataFrame):
326
- self._fit_snowpark(dataset)
327
- else:
328
- raise TypeError(
329
- f"Unexpected dataset type: {type(dataset)}."
330
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
319
+ if hasattr(self._sklearn_object, "n_jobs") and self._sklearn_object.n_jobs is None:
320
+ self._sklearn_object.n_jobs = -1
321
+ if isinstance(dataset, DataFrame):
322
+ session = dataset._session
323
+ assert session is not None # keep mypy happy
324
+ # Validate that key package version in user workspace are supported in snowflake conda channel
325
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
326
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
327
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
331
328
  )
332
- self._is_fitted = True
333
- self._get_model_signatures(dataset)
334
- return self
335
329
 
336
- def _fit_snowpark(self, dataset: DataFrame) -> None:
337
- session = dataset._session
338
- assert session is not None # keep mypy happy
339
- # Validate that key package version in user workspace are supported in snowflake conda channel
340
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
341
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
342
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
343
- )
330
+ # Specify input columns so column pruning will be enforced
331
+ selected_cols = self._get_active_columns()
332
+ if len(selected_cols) > 0:
333
+ dataset = dataset.select(selected_cols)
344
334
 
345
- selected_cols = self._get_active_columns()
346
- if len(selected_cols) > 0:
347
- dataset = dataset.select(selected_cols)
335
+ self._snowpark_cols = dataset.select(self.input_cols).columns
348
336
 
349
- assert self._sklearn_object is not None
350
- is_distributed = not is_single_node(session) and self._ENABLE_DISTRIBUTED is True
351
- if is_distributed:
352
- # Set the default value of the `n_jobs` attribute for the estimator.
353
- # If minus one is set, it will not be abided by in the UDTF, so we set that to the default value as well.
354
- if hasattr(self._sklearn_object.estimator, "n_jobs") and self._sklearn_object.estimator.n_jobs in [
355
- None,
356
- -1,
357
- ]:
358
- self._sklearn_object.estimator.n_jobs = DEFAULT_UDTF_NJOBS
359
- self._sklearn_object = self._handlers.fit_search_snowpark(
360
- param_grid=ParameterSampler(
361
- self._sklearn_object.param_distributions,
362
- n_iter=self._sklearn_object.n_iter,
363
- random_state=self._sklearn_object.random_state,
364
- ),
365
- dataset=dataset,
366
- session=session,
367
- estimator=self._sklearn_object,
368
- dependencies=self._get_dependencies(),
369
- udf_imports=["sklearn"],
370
- input_cols=self.input_cols,
371
- label_cols=self.label_cols,
372
- sample_weight_col=self.sample_weight_col,
373
- )
374
- else:
375
- # Fall back with stored procedure implementation
376
- # set the parallel factor to default to minus one, to fully accelerate the cores in single node
377
- if self._sklearn_object.n_jobs is None:
378
- self._sklearn_object.n_jobs = -1
379
-
380
- self._sklearn_object = self._handlers.fit_snowpark(
381
- dataset,
382
- session,
383
- self._sklearn_object,
384
- ["snowflake-snowpark-python"] + self._get_dependencies(),
385
- self.input_cols,
386
- self.label_cols,
387
- self.sample_weight_col,
388
- )
337
+ model_trainer = ModelTrainerBuilder.build(
338
+ estimator=self._sklearn_object,
339
+ dataset=dataset,
340
+ input_cols=self.input_cols,
341
+ label_cols=self.label_cols,
342
+ sample_weight_col=self.sample_weight_col,
343
+ autogenerated=False,
344
+ subproject=_SUBPROJECT,
345
+ )
346
+ self._sklearn_object = model_trainer.train()
347
+ self._is_fitted = True
348
+ self._get_model_signatures(dataset)
349
+ return self
389
350
 
390
351
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
391
352
  if self._drop_input_cols:
@@ -539,10 +500,6 @@ class RandomizedSearchCV(BaseTransformer):
539
500
  project=_PROJECT,
540
501
  subproject=_SUBPROJECT,
541
502
  )
542
- @telemetry.add_stmt_params_to_df(
543
- project=_PROJECT,
544
- subproject=_SUBPROJECT,
545
- )
546
503
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
547
504
  """Call predict on the estimator with the best found parameters
548
505
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.predict]
@@ -584,10 +541,6 @@ class RandomizedSearchCV(BaseTransformer):
584
541
  project=_PROJECT,
585
542
  subproject=_SUBPROJECT,
586
543
  )
587
- @telemetry.add_stmt_params_to_df(
588
- project=_PROJECT,
589
- subproject=_SUBPROJECT,
590
- )
591
544
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
592
545
  """Call transform on the estimator with the best found parameters
593
546
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.transform]
@@ -651,10 +604,6 @@ class RandomizedSearchCV(BaseTransformer):
651
604
  project=_PROJECT,
652
605
  subproject=_SUBPROJECT,
653
606
  )
654
- @telemetry.add_stmt_params_to_df(
655
- project=_PROJECT,
656
- subproject=_SUBPROJECT,
657
- )
658
607
  def predict_proba(
659
608
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
660
609
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -692,10 +641,6 @@ class RandomizedSearchCV(BaseTransformer):
692
641
  project=_PROJECT,
693
642
  subproject=_SUBPROJECT,
694
643
  )
695
- @telemetry.add_stmt_params_to_df(
696
- project=_PROJECT,
697
- subproject=_SUBPROJECT,
698
- )
699
644
  def predict_log_proba(
700
645
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
701
646
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -734,10 +679,6 @@ class RandomizedSearchCV(BaseTransformer):
734
679
  project=_PROJECT,
735
680
  subproject=_SUBPROJECT,
736
681
  )
737
- @telemetry.add_stmt_params_to_df(
738
- project=_PROJECT,
739
- subproject=_SUBPROJECT,
740
- )
741
682
  def decision_function(
742
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
743
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -774,6 +715,8 @@ class RandomizedSearchCV(BaseTransformer):
774
715
  @available_if(original_estimator_has_callable("score")) # type: ignore[misc]
775
716
  def score(self, dataset: Union[DataFrame, pd.DataFrame]) -> float:
776
717
  """
718
+ If implemented by the original estimator, return the score for the dataset.
719
+
777
720
  Args:
778
721
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
779
722
  Snowpark or Pandas DataFrame.
@@ -826,9 +769,9 @@ class RandomizedSearchCV(BaseTransformer):
826
769
  # For classifier, the type of predict is the same as the type of label
827
770
  if self._sklearn_object._estimator_type == "classifier":
828
771
  # label columns is the desired type for output
829
- outputs = _infer_signature(dataset[self.label_cols], "output")
772
+ outputs = list(_infer_signature(dataset[self.label_cols], "output"))
830
773
  # rename the output columns
831
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
774
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
832
775
  self._model_signature_dict["predict"] = ModelSignature(
833
776
  inputs, ([] if self._drop_input_cols else inputs) + outputs
834
777
  )
@@ -865,6 +808,9 @@ class RandomizedSearchCV(BaseTransformer):
865
808
  return self._model_signature_dict
866
809
 
867
810
  def to_sklearn(self) -> sklearn.model_selection.RandomizedSearchCV:
811
+ """
812
+ Get sklearn.model_selection.RandomizedSearchCV object.
813
+ """
868
814
  assert self._sklearn_object is not None
869
815
  return self._sklearn_object
870
816