snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class DecisionTreeClassifier(BaseTransformer):
|
57
58
|
r"""A decision tree classifier
|
58
59
|
For more details on this class, see [sklearn.tree.DecisionTreeClassifier]
|
@@ -60,6 +61,51 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"gini", "entropy", "log_loss"}, default="gini"
|
64
110
|
The function to measure the quality of a split. Supported criteria are
|
65
111
|
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
|
@@ -174,42 +220,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
174
220
|
subtree with the largest cost complexity that is smaller than
|
175
221
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
176
222
|
:ref:`minimal_cost_complexity_pruning` for details.
|
177
|
-
|
178
|
-
input_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that contain features.
|
180
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
181
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
182
|
-
parameters are considered input columns.
|
183
|
-
|
184
|
-
label_cols: Optional[Union[str, List[str]]]
|
185
|
-
A string or list of strings representing column names that contain labels.
|
186
|
-
This is a required param for estimators, as there is no way to infer these
|
187
|
-
columns. If this parameter is not specified, then object is fitted without
|
188
|
-
labels (like a transformer).
|
189
|
-
|
190
|
-
output_cols: Optional[Union[str, List[str]]]
|
191
|
-
A string or list of strings representing column names that will store the
|
192
|
-
output of predict and transform operations. The length of output_cols must
|
193
|
-
match the expected number of output columns from the specific estimator or
|
194
|
-
transformer class used.
|
195
|
-
If this parameter is not specified, output column names are derived by
|
196
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
197
|
-
column names work for estimator's predict() method, but output_cols must
|
198
|
-
be set explicitly for transformers.
|
199
|
-
|
200
|
-
sample_weight_col: Optional[str]
|
201
|
-
A string representing the column name containing the sample weights.
|
202
|
-
This argument is only required when working with weighted datasets.
|
203
|
-
|
204
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
205
|
-
A string or a list of strings indicating column names to be excluded from any
|
206
|
-
operations (such as train, transform, or inference). These specified column(s)
|
207
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
208
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
209
|
-
columns, like index columns, during training or inference.
|
210
|
-
|
211
|
-
drop_input_cols: Optional[bool], default=False
|
212
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
213
223
|
"""
|
214
224
|
|
215
225
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -242,7 +252,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
242
252
|
self.set_passthrough_cols(passthrough_cols)
|
243
253
|
self.set_drop_input_cols(drop_input_cols)
|
244
254
|
self.set_sample_weight_col(sample_weight_col)
|
245
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
246
256
|
|
247
257
|
self._deps = list(deps)
|
248
258
|
|
@@ -262,13 +272,14 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
262
272
|
args=init_args,
|
263
273
|
klass=sklearn.tree.DecisionTreeClassifier
|
264
274
|
)
|
265
|
-
self._sklearn_object = sklearn.tree.DecisionTreeClassifier(
|
275
|
+
self._sklearn_object: Any = sklearn.tree.DecisionTreeClassifier(
|
266
276
|
**cleaned_up_init_args,
|
267
277
|
)
|
268
278
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
269
279
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
270
280
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
271
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
281
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
282
|
+
self._autogenerated = True
|
272
283
|
|
273
284
|
def _get_rand_id(self) -> str:
|
274
285
|
"""
|
@@ -324,54 +335,48 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
324
335
|
self
|
325
336
|
"""
|
326
337
|
self._infer_input_output_cols(dataset)
|
327
|
-
if isinstance(dataset,
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
self.
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
338
|
+
if isinstance(dataset, DataFrame):
|
339
|
+
session = dataset._session
|
340
|
+
assert session is not None # keep mypy happy
|
341
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
342
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
343
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
344
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
345
|
+
|
346
|
+
# Specify input columns so column pruning will be enforced
|
347
|
+
selected_cols = self._get_active_columns()
|
348
|
+
if len(selected_cols) > 0:
|
349
|
+
dataset = dataset.select(selected_cols)
|
350
|
+
|
351
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
352
|
+
|
353
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
354
|
+
if SNOWML_SPROC_ENV in os.environ:
|
355
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
356
|
+
project=_PROJECT,
|
357
|
+
subproject=_SUBPROJECT,
|
358
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeClassifier.__class__.__name__),
|
359
|
+
api_calls=[Session.call],
|
360
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
361
|
+
)
|
362
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
363
|
+
pd_df.columns = dataset.columns
|
364
|
+
dataset = pd_df
|
365
|
+
|
366
|
+
model_trainer = ModelTrainerBuilder.build(
|
367
|
+
estimator=self._sklearn_object,
|
368
|
+
dataset=dataset,
|
369
|
+
input_cols=self.input_cols,
|
370
|
+
label_cols=self.label_cols,
|
371
|
+
sample_weight_col=self.sample_weight_col,
|
372
|
+
autogenerated=self._autogenerated,
|
373
|
+
subproject=_SUBPROJECT
|
374
|
+
)
|
375
|
+
self._sklearn_object = model_trainer.train()
|
343
376
|
self._is_fitted = True
|
344
377
|
self._get_model_signatures(dataset)
|
345
378
|
return self
|
346
379
|
|
347
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
348
|
-
session = dataset._session
|
349
|
-
assert session is not None # keep mypy happy
|
350
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
351
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
352
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
353
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
354
|
-
|
355
|
-
# Specify input columns so column pruning will be enforced
|
356
|
-
selected_cols = self._get_active_columns()
|
357
|
-
if len(selected_cols) > 0:
|
358
|
-
dataset = dataset.select(selected_cols)
|
359
|
-
|
360
|
-
estimator = self._sklearn_object
|
361
|
-
assert estimator is not None # Keep mypy happy
|
362
|
-
|
363
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
364
|
-
|
365
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
366
|
-
dataset,
|
367
|
-
session,
|
368
|
-
estimator,
|
369
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
370
|
-
self.input_cols,
|
371
|
-
self.label_cols,
|
372
|
-
self.sample_weight_col,
|
373
|
-
)
|
374
|
-
|
375
380
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
376
381
|
if self._drop_input_cols:
|
377
382
|
return []
|
@@ -559,11 +564,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
559
564
|
subproject=_SUBPROJECT,
|
560
565
|
custom_tags=dict([("autogen", True)]),
|
561
566
|
)
|
562
|
-
@telemetry.add_stmt_params_to_df(
|
563
|
-
project=_PROJECT,
|
564
|
-
subproject=_SUBPROJECT,
|
565
|
-
custom_tags=dict([("autogen", True)]),
|
566
|
-
)
|
567
567
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
568
568
|
"""Predict class or regression value for X
|
569
569
|
For more details on this function, see [sklearn.tree.DecisionTreeClassifier.predict]
|
@@ -617,11 +617,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
617
617
|
subproject=_SUBPROJECT,
|
618
618
|
custom_tags=dict([("autogen", True)]),
|
619
619
|
)
|
620
|
-
@telemetry.add_stmt_params_to_df(
|
621
|
-
project=_PROJECT,
|
622
|
-
subproject=_SUBPROJECT,
|
623
|
-
custom_tags=dict([("autogen", True)]),
|
624
|
-
)
|
625
620
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
626
621
|
"""Method not supported for this class.
|
627
622
|
|
@@ -678,7 +673,8 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
678
673
|
if False:
|
679
674
|
self.fit(dataset)
|
680
675
|
assert self._sklearn_object is not None
|
681
|
-
|
676
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
677
|
+
return labels
|
682
678
|
else:
|
683
679
|
raise NotImplementedError
|
684
680
|
|
@@ -714,6 +710,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
714
710
|
output_cols = []
|
715
711
|
|
716
712
|
# Make sure column names are valid snowflake identifiers.
|
713
|
+
assert output_cols is not None # Make MyPy happy
|
717
714
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
718
715
|
|
719
716
|
return rv
|
@@ -724,11 +721,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
724
721
|
subproject=_SUBPROJECT,
|
725
722
|
custom_tags=dict([("autogen", True)]),
|
726
723
|
)
|
727
|
-
@telemetry.add_stmt_params_to_df(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
724
|
def predict_proba(
|
733
725
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
734
726
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -771,11 +763,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
771
763
|
subproject=_SUBPROJECT,
|
772
764
|
custom_tags=dict([("autogen", True)]),
|
773
765
|
)
|
774
|
-
@telemetry.add_stmt_params_to_df(
|
775
|
-
project=_PROJECT,
|
776
|
-
subproject=_SUBPROJECT,
|
777
|
-
custom_tags=dict([("autogen", True)]),
|
778
|
-
)
|
779
766
|
def predict_log_proba(
|
780
767
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
781
768
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -814,16 +801,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
814
801
|
return output_df
|
815
802
|
|
816
803
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
817
|
-
@telemetry.send_api_usage_telemetry(
|
818
|
-
project=_PROJECT,
|
819
|
-
subproject=_SUBPROJECT,
|
820
|
-
custom_tags=dict([("autogen", True)]),
|
821
|
-
)
|
822
|
-
@telemetry.add_stmt_params_to_df(
|
823
|
-
project=_PROJECT,
|
824
|
-
subproject=_SUBPROJECT,
|
825
|
-
custom_tags=dict([("autogen", True)]),
|
826
|
-
)
|
827
804
|
def decision_function(
|
828
805
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
829
806
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -924,11 +901,6 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
924
901
|
subproject=_SUBPROJECT,
|
925
902
|
custom_tags=dict([("autogen", True)]),
|
926
903
|
)
|
927
|
-
@telemetry.add_stmt_params_to_df(
|
928
|
-
project=_PROJECT,
|
929
|
-
subproject=_SUBPROJECT,
|
930
|
-
custom_tags=dict([("autogen", True)]),
|
931
|
-
)
|
932
904
|
def kneighbors(
|
933
905
|
self,
|
934
906
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -988,9 +960,9 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
988
960
|
# For classifier, the type of predict is the same as the type of label
|
989
961
|
if self._sklearn_object._estimator_type == 'classifier':
|
990
962
|
# label columns is the desired type for output
|
991
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
963
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
992
964
|
# rename the output columns
|
993
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
965
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
994
966
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
995
967
|
([] if self._drop_input_cols else inputs)
|
996
968
|
+ outputs)
|