snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
snowflake/ml/modeling/svm/svr.py
CHANGED
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SVR(BaseTransformer):
|
57
58
|
r"""Epsilon-Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.SVR]
|
@@ -60,6 +61,51 @@ class SVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'
|
64
110
|
Specifies the kernel type to be used in the algorithm.
|
65
111
|
If none is given, 'rbf' will be used. If a callable is given it is
|
@@ -109,42 +155,6 @@ class SVR(BaseTransformer):
|
|
109
155
|
|
110
156
|
max_iter: int, default=-1
|
111
157
|
Hard limit on iterations within solver, or -1 for no limit.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
117
|
-
parameters are considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or a list of strings indicating column names to be excluded from any
|
141
|
-
operations (such as train, transform, or inference). These specified column(s)
|
142
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
143
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
144
|
-
columns, like index columns, during training or inference.
|
145
|
-
|
146
|
-
drop_input_cols: Optional[bool], default=False
|
147
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
148
158
|
"""
|
149
159
|
|
150
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -176,7 +186,7 @@ class SVR(BaseTransformer):
|
|
176
186
|
self.set_passthrough_cols(passthrough_cols)
|
177
187
|
self.set_drop_input_cols(drop_input_cols)
|
178
188
|
self.set_sample_weight_col(sample_weight_col)
|
179
|
-
deps = set(
|
189
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
180
190
|
|
181
191
|
self._deps = list(deps)
|
182
192
|
|
@@ -195,13 +205,14 @@ class SVR(BaseTransformer):
|
|
195
205
|
args=init_args,
|
196
206
|
klass=sklearn.svm.SVR
|
197
207
|
)
|
198
|
-
self._sklearn_object = sklearn.svm.SVR(
|
208
|
+
self._sklearn_object: Any = sklearn.svm.SVR(
|
199
209
|
**cleaned_up_init_args,
|
200
210
|
)
|
201
211
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
202
212
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
203
213
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
204
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
214
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
215
|
+
self._autogenerated = True
|
205
216
|
|
206
217
|
def _get_rand_id(self) -> str:
|
207
218
|
"""
|
@@ -257,54 +268,48 @@ class SVR(BaseTransformer):
|
|
257
268
|
self
|
258
269
|
"""
|
259
270
|
self._infer_input_output_cols(dataset)
|
260
|
-
if isinstance(dataset,
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
self.
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
271
|
+
if isinstance(dataset, DataFrame):
|
272
|
+
session = dataset._session
|
273
|
+
assert session is not None # keep mypy happy
|
274
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
275
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
276
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
277
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
278
|
+
|
279
|
+
# Specify input columns so column pruning will be enforced
|
280
|
+
selected_cols = self._get_active_columns()
|
281
|
+
if len(selected_cols) > 0:
|
282
|
+
dataset = dataset.select(selected_cols)
|
283
|
+
|
284
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
|
+
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
287
|
+
if SNOWML_SPROC_ENV in os.environ:
|
288
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
289
|
+
project=_PROJECT,
|
290
|
+
subproject=_SUBPROJECT,
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVR.__class__.__name__),
|
292
|
+
api_calls=[Session.call],
|
293
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
294
|
+
)
|
295
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
|
+
pd_df.columns = dataset.columns
|
297
|
+
dataset = pd_df
|
298
|
+
|
299
|
+
model_trainer = ModelTrainerBuilder.build(
|
300
|
+
estimator=self._sklearn_object,
|
301
|
+
dataset=dataset,
|
302
|
+
input_cols=self.input_cols,
|
303
|
+
label_cols=self.label_cols,
|
304
|
+
sample_weight_col=self.sample_weight_col,
|
305
|
+
autogenerated=self._autogenerated,
|
306
|
+
subproject=_SUBPROJECT
|
307
|
+
)
|
308
|
+
self._sklearn_object = model_trainer.train()
|
276
309
|
self._is_fitted = True
|
277
310
|
self._get_model_signatures(dataset)
|
278
311
|
return self
|
279
312
|
|
280
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
281
|
-
session = dataset._session
|
282
|
-
assert session is not None # keep mypy happy
|
283
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
284
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
285
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
286
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
287
|
-
|
288
|
-
# Specify input columns so column pruning will be enforced
|
289
|
-
selected_cols = self._get_active_columns()
|
290
|
-
if len(selected_cols) > 0:
|
291
|
-
dataset = dataset.select(selected_cols)
|
292
|
-
|
293
|
-
estimator = self._sklearn_object
|
294
|
-
assert estimator is not None # Keep mypy happy
|
295
|
-
|
296
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
|
-
|
298
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
299
|
-
dataset,
|
300
|
-
session,
|
301
|
-
estimator,
|
302
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
303
|
-
self.input_cols,
|
304
|
-
self.label_cols,
|
305
|
-
self.sample_weight_col,
|
306
|
-
)
|
307
|
-
|
308
313
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
309
314
|
if self._drop_input_cols:
|
310
315
|
return []
|
@@ -492,11 +497,6 @@ class SVR(BaseTransformer):
|
|
492
497
|
subproject=_SUBPROJECT,
|
493
498
|
custom_tags=dict([("autogen", True)]),
|
494
499
|
)
|
495
|
-
@telemetry.add_stmt_params_to_df(
|
496
|
-
project=_PROJECT,
|
497
|
-
subproject=_SUBPROJECT,
|
498
|
-
custom_tags=dict([("autogen", True)]),
|
499
|
-
)
|
500
500
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
501
501
|
"""Perform regression on samples in X
|
502
502
|
For more details on this function, see [sklearn.svm.SVR.predict]
|
@@ -550,11 +550,6 @@ class SVR(BaseTransformer):
|
|
550
550
|
subproject=_SUBPROJECT,
|
551
551
|
custom_tags=dict([("autogen", True)]),
|
552
552
|
)
|
553
|
-
@telemetry.add_stmt_params_to_df(
|
554
|
-
project=_PROJECT,
|
555
|
-
subproject=_SUBPROJECT,
|
556
|
-
custom_tags=dict([("autogen", True)]),
|
557
|
-
)
|
558
553
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
559
554
|
"""Method not supported for this class.
|
560
555
|
|
@@ -611,7 +606,8 @@ class SVR(BaseTransformer):
|
|
611
606
|
if False:
|
612
607
|
self.fit(dataset)
|
613
608
|
assert self._sklearn_object is not None
|
614
|
-
|
609
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
610
|
+
return labels
|
615
611
|
else:
|
616
612
|
raise NotImplementedError
|
617
613
|
|
@@ -647,6 +643,7 @@ class SVR(BaseTransformer):
|
|
647
643
|
output_cols = []
|
648
644
|
|
649
645
|
# Make sure column names are valid snowflake identifiers.
|
646
|
+
assert output_cols is not None # Make MyPy happy
|
650
647
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
651
648
|
|
652
649
|
return rv
|
@@ -657,11 +654,6 @@ class SVR(BaseTransformer):
|
|
657
654
|
subproject=_SUBPROJECT,
|
658
655
|
custom_tags=dict([("autogen", True)]),
|
659
656
|
)
|
660
|
-
@telemetry.add_stmt_params_to_df(
|
661
|
-
project=_PROJECT,
|
662
|
-
subproject=_SUBPROJECT,
|
663
|
-
custom_tags=dict([("autogen", True)]),
|
664
|
-
)
|
665
657
|
def predict_proba(
|
666
658
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
667
659
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -702,11 +694,6 @@ class SVR(BaseTransformer):
|
|
702
694
|
subproject=_SUBPROJECT,
|
703
695
|
custom_tags=dict([("autogen", True)]),
|
704
696
|
)
|
705
|
-
@telemetry.add_stmt_params_to_df(
|
706
|
-
project=_PROJECT,
|
707
|
-
subproject=_SUBPROJECT,
|
708
|
-
custom_tags=dict([("autogen", True)]),
|
709
|
-
)
|
710
697
|
def predict_log_proba(
|
711
698
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
712
699
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -743,16 +730,6 @@ class SVR(BaseTransformer):
|
|
743
730
|
return output_df
|
744
731
|
|
745
732
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
746
|
-
@telemetry.send_api_usage_telemetry(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
|
-
@telemetry.add_stmt_params_to_df(
|
752
|
-
project=_PROJECT,
|
753
|
-
subproject=_SUBPROJECT,
|
754
|
-
custom_tags=dict([("autogen", True)]),
|
755
|
-
)
|
756
733
|
def decision_function(
|
757
734
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
758
735
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -853,11 +830,6 @@ class SVR(BaseTransformer):
|
|
853
830
|
subproject=_SUBPROJECT,
|
854
831
|
custom_tags=dict([("autogen", True)]),
|
855
832
|
)
|
856
|
-
@telemetry.add_stmt_params_to_df(
|
857
|
-
project=_PROJECT,
|
858
|
-
subproject=_SUBPROJECT,
|
859
|
-
custom_tags=dict([("autogen", True)]),
|
860
|
-
)
|
861
833
|
def kneighbors(
|
862
834
|
self,
|
863
835
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -917,9 +889,9 @@ class SVR(BaseTransformer):
|
|
917
889
|
# For classifier, the type of predict is the same as the type of label
|
918
890
|
if self._sklearn_object._estimator_type == 'classifier':
|
919
891
|
# label columns is the desired type for output
|
920
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
892
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
921
893
|
# rename the output columns
|
922
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
894
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
923
895
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
924
896
|
([] if self._drop_input_cols else inputs)
|
925
897
|
+ outputs)
|