snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class FactorAnalysis(BaseTransformer):
|
57
58
|
r"""Factor Analysis (FA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.FactorAnalysis]
|
@@ -60,6 +61,49 @@ class FactorAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Dimensionality of latent space, the number of components
|
65
109
|
of ``X`` that are obtained after ``transform``.
|
@@ -103,42 +147,6 @@ class FactorAnalysis(BaseTransformer):
|
|
103
147
|
Only used when ``svd_method`` equals 'randomized'. Pass an int for
|
104
148
|
reproducible results across multiple function calls.
|
105
149
|
See :term:`Glossary <random_state>`.
|
106
|
-
|
107
|
-
input_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that contain features.
|
109
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
110
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
111
|
-
parameters are considered input columns.
|
112
|
-
|
113
|
-
label_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain labels.
|
115
|
-
This is a required param for estimators, as there is no way to infer these
|
116
|
-
columns. If this parameter is not specified, then object is fitted without
|
117
|
-
labels (like a transformer).
|
118
|
-
|
119
|
-
output_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that will store the
|
121
|
-
output of predict and transform operations. The length of output_cols must
|
122
|
-
match the expected number of output columns from the specific estimator or
|
123
|
-
transformer class used.
|
124
|
-
If this parameter is not specified, output column names are derived by
|
125
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
126
|
-
column names work for estimator's predict() method, but output_cols must
|
127
|
-
be set explicitly for transformers.
|
128
|
-
|
129
|
-
sample_weight_col: Optional[str]
|
130
|
-
A string representing the column name containing the sample weights.
|
131
|
-
This argument is only required when working with weighted datasets.
|
132
|
-
|
133
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or a list of strings indicating column names to be excluded from any
|
135
|
-
operations (such as train, transform, or inference). These specified column(s)
|
136
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
137
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
138
|
-
columns, like index columns, during training or inference.
|
139
|
-
|
140
|
-
drop_input_cols: Optional[bool], default=False
|
141
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
142
150
|
"""
|
143
151
|
|
144
152
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -168,7 +176,7 @@ class FactorAnalysis(BaseTransformer):
|
|
168
176
|
self.set_passthrough_cols(passthrough_cols)
|
169
177
|
self.set_drop_input_cols(drop_input_cols)
|
170
178
|
self.set_sample_weight_col(sample_weight_col)
|
171
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
172
180
|
|
173
181
|
self._deps = list(deps)
|
174
182
|
|
@@ -185,13 +193,14 @@ class FactorAnalysis(BaseTransformer):
|
|
185
193
|
args=init_args,
|
186
194
|
klass=sklearn.decomposition.FactorAnalysis
|
187
195
|
)
|
188
|
-
self._sklearn_object = sklearn.decomposition.FactorAnalysis(
|
196
|
+
self._sklearn_object: Any = sklearn.decomposition.FactorAnalysis(
|
189
197
|
**cleaned_up_init_args,
|
190
198
|
)
|
191
199
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
192
200
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
193
201
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
194
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
202
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
203
|
+
self._autogenerated = True
|
195
204
|
|
196
205
|
def _get_rand_id(self) -> str:
|
197
206
|
"""
|
@@ -247,54 +256,48 @@ class FactorAnalysis(BaseTransformer):
|
|
247
256
|
self
|
248
257
|
"""
|
249
258
|
self._infer_input_output_cols(dataset)
|
250
|
-
if isinstance(dataset,
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
self.
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
259
|
+
if isinstance(dataset, DataFrame):
|
260
|
+
session = dataset._session
|
261
|
+
assert session is not None # keep mypy happy
|
262
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
263
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
264
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
265
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
266
|
+
|
267
|
+
# Specify input columns so column pruning will be enforced
|
268
|
+
selected_cols = self._get_active_columns()
|
269
|
+
if len(selected_cols) > 0:
|
270
|
+
dataset = dataset.select(selected_cols)
|
271
|
+
|
272
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
273
|
+
|
274
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
275
|
+
if SNOWML_SPROC_ENV in os.environ:
|
276
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
277
|
+
project=_PROJECT,
|
278
|
+
subproject=_SUBPROJECT,
|
279
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FactorAnalysis.__class__.__name__),
|
280
|
+
api_calls=[Session.call],
|
281
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
282
|
+
)
|
283
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
284
|
+
pd_df.columns = dataset.columns
|
285
|
+
dataset = pd_df
|
286
|
+
|
287
|
+
model_trainer = ModelTrainerBuilder.build(
|
288
|
+
estimator=self._sklearn_object,
|
289
|
+
dataset=dataset,
|
290
|
+
input_cols=self.input_cols,
|
291
|
+
label_cols=self.label_cols,
|
292
|
+
sample_weight_col=self.sample_weight_col,
|
293
|
+
autogenerated=self._autogenerated,
|
294
|
+
subproject=_SUBPROJECT
|
295
|
+
)
|
296
|
+
self._sklearn_object = model_trainer.train()
|
266
297
|
self._is_fitted = True
|
267
298
|
self._get_model_signatures(dataset)
|
268
299
|
return self
|
269
300
|
|
270
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
271
|
-
session = dataset._session
|
272
|
-
assert session is not None # keep mypy happy
|
273
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
-
|
278
|
-
# Specify input columns so column pruning will be enforced
|
279
|
-
selected_cols = self._get_active_columns()
|
280
|
-
if len(selected_cols) > 0:
|
281
|
-
dataset = dataset.select(selected_cols)
|
282
|
-
|
283
|
-
estimator = self._sklearn_object
|
284
|
-
assert estimator is not None # Keep mypy happy
|
285
|
-
|
286
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
-
|
288
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
289
|
-
dataset,
|
290
|
-
session,
|
291
|
-
estimator,
|
292
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
293
|
-
self.input_cols,
|
294
|
-
self.label_cols,
|
295
|
-
self.sample_weight_col,
|
296
|
-
)
|
297
|
-
|
298
301
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
299
302
|
if self._drop_input_cols:
|
300
303
|
return []
|
@@ -482,11 +485,6 @@ class FactorAnalysis(BaseTransformer):
|
|
482
485
|
subproject=_SUBPROJECT,
|
483
486
|
custom_tags=dict([("autogen", True)]),
|
484
487
|
)
|
485
|
-
@telemetry.add_stmt_params_to_df(
|
486
|
-
project=_PROJECT,
|
487
|
-
subproject=_SUBPROJECT,
|
488
|
-
custom_tags=dict([("autogen", True)]),
|
489
|
-
)
|
490
488
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
491
489
|
"""Method not supported for this class.
|
492
490
|
|
@@ -538,11 +536,6 @@ class FactorAnalysis(BaseTransformer):
|
|
538
536
|
subproject=_SUBPROJECT,
|
539
537
|
custom_tags=dict([("autogen", True)]),
|
540
538
|
)
|
541
|
-
@telemetry.add_stmt_params_to_df(
|
542
|
-
project=_PROJECT,
|
543
|
-
subproject=_SUBPROJECT,
|
544
|
-
custom_tags=dict([("autogen", True)]),
|
545
|
-
)
|
546
539
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
547
540
|
"""Apply dimensionality reduction to X using the model
|
548
541
|
For more details on this function, see [sklearn.decomposition.FactorAnalysis.transform]
|
@@ -601,7 +594,8 @@ class FactorAnalysis(BaseTransformer):
|
|
601
594
|
if False:
|
602
595
|
self.fit(dataset)
|
603
596
|
assert self._sklearn_object is not None
|
604
|
-
|
597
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
598
|
+
return labels
|
605
599
|
else:
|
606
600
|
raise NotImplementedError
|
607
601
|
|
@@ -637,6 +631,7 @@ class FactorAnalysis(BaseTransformer):
|
|
637
631
|
output_cols = []
|
638
632
|
|
639
633
|
# Make sure column names are valid snowflake identifiers.
|
634
|
+
assert output_cols is not None # Make MyPy happy
|
640
635
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
641
636
|
|
642
637
|
return rv
|
@@ -647,11 +642,6 @@ class FactorAnalysis(BaseTransformer):
|
|
647
642
|
subproject=_SUBPROJECT,
|
648
643
|
custom_tags=dict([("autogen", True)]),
|
649
644
|
)
|
650
|
-
@telemetry.add_stmt_params_to_df(
|
651
|
-
project=_PROJECT,
|
652
|
-
subproject=_SUBPROJECT,
|
653
|
-
custom_tags=dict([("autogen", True)]),
|
654
|
-
)
|
655
645
|
def predict_proba(
|
656
646
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
657
647
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -692,11 +682,6 @@ class FactorAnalysis(BaseTransformer):
|
|
692
682
|
subproject=_SUBPROJECT,
|
693
683
|
custom_tags=dict([("autogen", True)]),
|
694
684
|
)
|
695
|
-
@telemetry.add_stmt_params_to_df(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
685
|
def predict_log_proba(
|
701
686
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
702
687
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -733,16 +718,6 @@ class FactorAnalysis(BaseTransformer):
|
|
733
718
|
return output_df
|
734
719
|
|
735
720
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
736
|
-
@telemetry.send_api_usage_telemetry(
|
737
|
-
project=_PROJECT,
|
738
|
-
subproject=_SUBPROJECT,
|
739
|
-
custom_tags=dict([("autogen", True)]),
|
740
|
-
)
|
741
|
-
@telemetry.add_stmt_params_to_df(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
721
|
def decision_function(
|
747
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
748
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,11 +818,6 @@ class FactorAnalysis(BaseTransformer):
|
|
843
818
|
subproject=_SUBPROJECT,
|
844
819
|
custom_tags=dict([("autogen", True)]),
|
845
820
|
)
|
846
|
-
@telemetry.add_stmt_params_to_df(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
821
|
def kneighbors(
|
852
822
|
self,
|
853
823
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -907,9 +877,9 @@ class FactorAnalysis(BaseTransformer):
|
|
907
877
|
# For classifier, the type of predict is the same as the type of label
|
908
878
|
if self._sklearn_object._estimator_type == 'classifier':
|
909
879
|
# label columns is the desired type for output
|
910
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
880
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
911
881
|
# rename the output columns
|
912
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
882
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
913
883
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
914
884
|
([] if self._drop_input_cols else inputs)
|
915
885
|
+ outputs)
|