snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RidgeCV(BaseTransformer):
|
57
58
|
r"""Ridge regression with built-in cross-validation
|
58
59
|
For more details on this class, see [sklearn.linear_model.RidgeCV]
|
@@ -60,6 +61,51 @@ class RidgeCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
|
64
110
|
Array of alpha values to try.
|
65
111
|
Regularization strength; must be a positive float. Regularization
|
@@ -123,42 +169,6 @@ class RidgeCV(BaseTransformer):
|
|
123
169
|
settings: multiple prediction targets). When set to `True`, after
|
124
170
|
fitting, the `alpha_` attribute will contain a value for each target.
|
125
171
|
When set to `False`, a single alpha is used for all targets.
|
126
|
-
|
127
|
-
input_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that contain features.
|
129
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
130
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
131
|
-
parameters are considered input columns.
|
132
|
-
|
133
|
-
label_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that contain labels.
|
135
|
-
This is a required param for estimators, as there is no way to infer these
|
136
|
-
columns. If this parameter is not specified, then object is fitted without
|
137
|
-
labels (like a transformer).
|
138
|
-
|
139
|
-
output_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that will store the
|
141
|
-
output of predict and transform operations. The length of output_cols must
|
142
|
-
match the expected number of output columns from the specific estimator or
|
143
|
-
transformer class used.
|
144
|
-
If this parameter is not specified, output column names are derived by
|
145
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
146
|
-
column names work for estimator's predict() method, but output_cols must
|
147
|
-
be set explicitly for transformers.
|
148
|
-
|
149
|
-
sample_weight_col: Optional[str]
|
150
|
-
A string representing the column name containing the sample weights.
|
151
|
-
This argument is only required when working with weighted datasets.
|
152
|
-
|
153
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or a list of strings indicating column names to be excluded from any
|
155
|
-
operations (such as train, transform, or inference). These specified column(s)
|
156
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
157
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
158
|
-
columns, like index columns, during training or inference.
|
159
|
-
|
160
|
-
drop_input_cols: Optional[bool], default=False
|
161
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
162
172
|
"""
|
163
173
|
|
164
174
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -186,7 +196,7 @@ class RidgeCV(BaseTransformer):
|
|
186
196
|
self.set_passthrough_cols(passthrough_cols)
|
187
197
|
self.set_drop_input_cols(drop_input_cols)
|
188
198
|
self.set_sample_weight_col(sample_weight_col)
|
189
|
-
deps = set(
|
199
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
190
200
|
|
191
201
|
self._deps = list(deps)
|
192
202
|
|
@@ -201,13 +211,14 @@ class RidgeCV(BaseTransformer):
|
|
201
211
|
args=init_args,
|
202
212
|
klass=sklearn.linear_model.RidgeCV
|
203
213
|
)
|
204
|
-
self._sklearn_object = sklearn.linear_model.RidgeCV(
|
214
|
+
self._sklearn_object: Any = sklearn.linear_model.RidgeCV(
|
205
215
|
**cleaned_up_init_args,
|
206
216
|
)
|
207
217
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
208
218
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
209
219
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
210
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
220
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RidgeCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
221
|
+
self._autogenerated = True
|
211
222
|
|
212
223
|
def _get_rand_id(self) -> str:
|
213
224
|
"""
|
@@ -263,54 +274,48 @@ class RidgeCV(BaseTransformer):
|
|
263
274
|
self
|
264
275
|
"""
|
265
276
|
self._infer_input_output_cols(dataset)
|
266
|
-
if isinstance(dataset,
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
self.
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
277
|
+
if isinstance(dataset, DataFrame):
|
278
|
+
session = dataset._session
|
279
|
+
assert session is not None # keep mypy happy
|
280
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
281
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
282
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
283
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
284
|
+
|
285
|
+
# Specify input columns so column pruning will be enforced
|
286
|
+
selected_cols = self._get_active_columns()
|
287
|
+
if len(selected_cols) > 0:
|
288
|
+
dataset = dataset.select(selected_cols)
|
289
|
+
|
290
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
|
+
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
293
|
+
if SNOWML_SPROC_ENV in os.environ:
|
294
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
295
|
+
project=_PROJECT,
|
296
|
+
subproject=_SUBPROJECT,
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeCV.__class__.__name__),
|
298
|
+
api_calls=[Session.call],
|
299
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
300
|
+
)
|
301
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
302
|
+
pd_df.columns = dataset.columns
|
303
|
+
dataset = pd_df
|
304
|
+
|
305
|
+
model_trainer = ModelTrainerBuilder.build(
|
306
|
+
estimator=self._sklearn_object,
|
307
|
+
dataset=dataset,
|
308
|
+
input_cols=self.input_cols,
|
309
|
+
label_cols=self.label_cols,
|
310
|
+
sample_weight_col=self.sample_weight_col,
|
311
|
+
autogenerated=self._autogenerated,
|
312
|
+
subproject=_SUBPROJECT
|
313
|
+
)
|
314
|
+
self._sklearn_object = model_trainer.train()
|
282
315
|
self._is_fitted = True
|
283
316
|
self._get_model_signatures(dataset)
|
284
317
|
return self
|
285
318
|
|
286
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
287
|
-
session = dataset._session
|
288
|
-
assert session is not None # keep mypy happy
|
289
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
290
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
291
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
292
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
293
|
-
|
294
|
-
# Specify input columns so column pruning will be enforced
|
295
|
-
selected_cols = self._get_active_columns()
|
296
|
-
if len(selected_cols) > 0:
|
297
|
-
dataset = dataset.select(selected_cols)
|
298
|
-
|
299
|
-
estimator = self._sklearn_object
|
300
|
-
assert estimator is not None # Keep mypy happy
|
301
|
-
|
302
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
303
|
-
|
304
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
305
|
-
dataset,
|
306
|
-
session,
|
307
|
-
estimator,
|
308
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
309
|
-
self.input_cols,
|
310
|
-
self.label_cols,
|
311
|
-
self.sample_weight_col,
|
312
|
-
)
|
313
|
-
|
314
319
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
315
320
|
if self._drop_input_cols:
|
316
321
|
return []
|
@@ -498,11 +503,6 @@ class RidgeCV(BaseTransformer):
|
|
498
503
|
subproject=_SUBPROJECT,
|
499
504
|
custom_tags=dict([("autogen", True)]),
|
500
505
|
)
|
501
|
-
@telemetry.add_stmt_params_to_df(
|
502
|
-
project=_PROJECT,
|
503
|
-
subproject=_SUBPROJECT,
|
504
|
-
custom_tags=dict([("autogen", True)]),
|
505
|
-
)
|
506
506
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
507
507
|
"""Predict using the linear model
|
508
508
|
For more details on this function, see [sklearn.linear_model.RidgeCV.predict]
|
@@ -556,11 +556,6 @@ class RidgeCV(BaseTransformer):
|
|
556
556
|
subproject=_SUBPROJECT,
|
557
557
|
custom_tags=dict([("autogen", True)]),
|
558
558
|
)
|
559
|
-
@telemetry.add_stmt_params_to_df(
|
560
|
-
project=_PROJECT,
|
561
|
-
subproject=_SUBPROJECT,
|
562
|
-
custom_tags=dict([("autogen", True)]),
|
563
|
-
)
|
564
559
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
565
560
|
"""Method not supported for this class.
|
566
561
|
|
@@ -617,7 +612,8 @@ class RidgeCV(BaseTransformer):
|
|
617
612
|
if False:
|
618
613
|
self.fit(dataset)
|
619
614
|
assert self._sklearn_object is not None
|
620
|
-
|
615
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
616
|
+
return labels
|
621
617
|
else:
|
622
618
|
raise NotImplementedError
|
623
619
|
|
@@ -653,6 +649,7 @@ class RidgeCV(BaseTransformer):
|
|
653
649
|
output_cols = []
|
654
650
|
|
655
651
|
# Make sure column names are valid snowflake identifiers.
|
652
|
+
assert output_cols is not None # Make MyPy happy
|
656
653
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
657
654
|
|
658
655
|
return rv
|
@@ -663,11 +660,6 @@ class RidgeCV(BaseTransformer):
|
|
663
660
|
subproject=_SUBPROJECT,
|
664
661
|
custom_tags=dict([("autogen", True)]),
|
665
662
|
)
|
666
|
-
@telemetry.add_stmt_params_to_df(
|
667
|
-
project=_PROJECT,
|
668
|
-
subproject=_SUBPROJECT,
|
669
|
-
custom_tags=dict([("autogen", True)]),
|
670
|
-
)
|
671
663
|
def predict_proba(
|
672
664
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
673
665
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -708,11 +700,6 @@ class RidgeCV(BaseTransformer):
|
|
708
700
|
subproject=_SUBPROJECT,
|
709
701
|
custom_tags=dict([("autogen", True)]),
|
710
702
|
)
|
711
|
-
@telemetry.add_stmt_params_to_df(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
703
|
def predict_log_proba(
|
717
704
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
718
705
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -749,16 +736,6 @@ class RidgeCV(BaseTransformer):
|
|
749
736
|
return output_df
|
750
737
|
|
751
738
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
752
|
-
@telemetry.send_api_usage_telemetry(
|
753
|
-
project=_PROJECT,
|
754
|
-
subproject=_SUBPROJECT,
|
755
|
-
custom_tags=dict([("autogen", True)]),
|
756
|
-
)
|
757
|
-
@telemetry.add_stmt_params_to_df(
|
758
|
-
project=_PROJECT,
|
759
|
-
subproject=_SUBPROJECT,
|
760
|
-
custom_tags=dict([("autogen", True)]),
|
761
|
-
)
|
762
739
|
def decision_function(
|
763
740
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
764
741
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -859,11 +836,6 @@ class RidgeCV(BaseTransformer):
|
|
859
836
|
subproject=_SUBPROJECT,
|
860
837
|
custom_tags=dict([("autogen", True)]),
|
861
838
|
)
|
862
|
-
@telemetry.add_stmt_params_to_df(
|
863
|
-
project=_PROJECT,
|
864
|
-
subproject=_SUBPROJECT,
|
865
|
-
custom_tags=dict([("autogen", True)]),
|
866
|
-
)
|
867
839
|
def kneighbors(
|
868
840
|
self,
|
869
841
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -923,9 +895,9 @@ class RidgeCV(BaseTransformer):
|
|
923
895
|
# For classifier, the type of predict is the same as the type of label
|
924
896
|
if self._sklearn_object._estimator_type == 'classifier':
|
925
897
|
# label columns is the desired type for output
|
926
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
898
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
927
899
|
# rename the output columns
|
928
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
900
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
929
901
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
930
902
|
([] if self._drop_input_cols else inputs)
|
931
903
|
+ outputs)
|