snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OutputCodeClassifier(BaseTransformer):
|
57
58
|
r"""(Error-Correcting) Output-Code multiclass strategy
|
58
59
|
For more details on this class, see [sklearn.multiclass.OutputCodeClassifier]
|
@@ -60,64 +61,73 @@ class OutputCodeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
estimator: estimator object
|
64
|
-
An estimator object implementing :term:`fit` and one of
|
65
|
-
:term:`decision_function` or :term:`predict_proba`.
|
66
|
-
|
67
|
-
code_size: float, default=1.5
|
68
|
-
Percentage of the number of classes to be used to create the code book.
|
69
|
-
A number between 0 and 1 will require fewer classifiers than
|
70
|
-
one-vs-the-rest. A number greater than 1 will require more classifiers
|
71
|
-
than one-vs-the-rest.
|
72
|
-
|
73
|
-
random_state: int, RandomState instance, default=None
|
74
|
-
The generator used to initialize the codebook.
|
75
|
-
Pass an int for reproducible output across multiple function calls.
|
76
|
-
See :term:`Glossary <random_state>`.
|
77
|
-
|
78
|
-
n_jobs: int, default=None
|
79
|
-
The number of jobs to use for the computation: the multiclass problems
|
80
|
-
are computed in parallel.
|
81
|
-
|
82
|
-
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
83
|
-
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
84
|
-
for more details.
|
85
64
|
|
86
65
|
input_cols: Optional[Union[str, List[str]]]
|
87
66
|
A string or list of strings representing column names that contain features.
|
88
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
89
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
90
|
-
parameters are considered input columns.
|
91
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
92
72
|
label_cols: Optional[Union[str, List[str]]]
|
93
73
|
A string or list of strings representing column names that contain labels.
|
94
|
-
|
95
|
-
|
96
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
97
76
|
|
98
77
|
output_cols: Optional[Union[str, List[str]]]
|
99
78
|
A string or list of strings representing column names that will store the
|
100
79
|
output of predict and transform operations. The length of output_cols must
|
101
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
102
81
|
transformer class used.
|
103
|
-
If this parameter
|
104
|
-
|
105
|
-
|
106
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
107
91
|
|
108
92
|
sample_weight_col: Optional[str]
|
109
93
|
A string representing the column name containing the sample weights.
|
110
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
111
97
|
|
112
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
113
99
|
A string or a list of strings indicating column names to be excluded from any
|
114
100
|
operations (such as train, transform, or inference). These specified column(s)
|
115
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
116
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
117
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
118
105
|
|
119
106
|
drop_input_cols: Optional[bool], default=False
|
120
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
estimator: estimator object
|
110
|
+
An estimator object implementing :term:`fit` and one of
|
111
|
+
:term:`decision_function` or :term:`predict_proba`.
|
112
|
+
|
113
|
+
code_size: float, default=1.5
|
114
|
+
Percentage of the number of classes to be used to create the code book.
|
115
|
+
A number between 0 and 1 will require fewer classifiers than
|
116
|
+
one-vs-the-rest. A number greater than 1 will require more classifiers
|
117
|
+
than one-vs-the-rest.
|
118
|
+
|
119
|
+
random_state: int, RandomState instance, default=None
|
120
|
+
The generator used to initialize the codebook.
|
121
|
+
Pass an int for reproducible output across multiple function calls.
|
122
|
+
See :term:`Glossary <random_state>`.
|
123
|
+
|
124
|
+
n_jobs: int, default=None
|
125
|
+
The number of jobs to use for the computation: the multiclass problems
|
126
|
+
are computed in parallel.
|
127
|
+
|
128
|
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
129
|
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
130
|
+
for more details.
|
121
131
|
"""
|
122
132
|
|
123
133
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -142,7 +152,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
142
152
|
self.set_passthrough_cols(passthrough_cols)
|
143
153
|
self.set_drop_input_cols(drop_input_cols)
|
144
154
|
self.set_sample_weight_col(sample_weight_col)
|
145
|
-
deps = set(
|
155
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
146
156
|
deps = deps | gather_dependencies(estimator)
|
147
157
|
self._deps = list(deps)
|
148
158
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -154,13 +164,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
154
164
|
args=init_args,
|
155
165
|
klass=sklearn.multiclass.OutputCodeClassifier
|
156
166
|
)
|
157
|
-
self._sklearn_object = sklearn.multiclass.OutputCodeClassifier(
|
167
|
+
self._sklearn_object: Any = sklearn.multiclass.OutputCodeClassifier(
|
158
168
|
**cleaned_up_init_args,
|
159
169
|
)
|
160
170
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
161
171
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
162
172
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
163
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
173
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
174
|
+
self._autogenerated = True
|
164
175
|
|
165
176
|
def _get_rand_id(self) -> str:
|
166
177
|
"""
|
@@ -216,54 +227,48 @@ class OutputCodeClassifier(BaseTransformer):
|
|
216
227
|
self
|
217
228
|
"""
|
218
229
|
self._infer_input_output_cols(dataset)
|
219
|
-
if isinstance(dataset,
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
self.
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
230
|
+
if isinstance(dataset, DataFrame):
|
231
|
+
session = dataset._session
|
232
|
+
assert session is not None # keep mypy happy
|
233
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
+
|
238
|
+
# Specify input columns so column pruning will be enforced
|
239
|
+
selected_cols = self._get_active_columns()
|
240
|
+
if len(selected_cols) > 0:
|
241
|
+
dataset = dataset.select(selected_cols)
|
242
|
+
|
243
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
+
|
245
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
|
+
if SNOWML_SPROC_ENV in os.environ:
|
247
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
248
|
+
project=_PROJECT,
|
249
|
+
subproject=_SUBPROJECT,
|
250
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OutputCodeClassifier.__class__.__name__),
|
251
|
+
api_calls=[Session.call],
|
252
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
|
+
)
|
254
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
255
|
+
pd_df.columns = dataset.columns
|
256
|
+
dataset = pd_df
|
257
|
+
|
258
|
+
model_trainer = ModelTrainerBuilder.build(
|
259
|
+
estimator=self._sklearn_object,
|
260
|
+
dataset=dataset,
|
261
|
+
input_cols=self.input_cols,
|
262
|
+
label_cols=self.label_cols,
|
263
|
+
sample_weight_col=self.sample_weight_col,
|
264
|
+
autogenerated=self._autogenerated,
|
265
|
+
subproject=_SUBPROJECT
|
266
|
+
)
|
267
|
+
self._sklearn_object = model_trainer.train()
|
235
268
|
self._is_fitted = True
|
236
269
|
self._get_model_signatures(dataset)
|
237
270
|
return self
|
238
271
|
|
239
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
240
|
-
session = dataset._session
|
241
|
-
assert session is not None # keep mypy happy
|
242
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
243
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
244
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
245
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
246
|
-
|
247
|
-
# Specify input columns so column pruning will be enforced
|
248
|
-
selected_cols = self._get_active_columns()
|
249
|
-
if len(selected_cols) > 0:
|
250
|
-
dataset = dataset.select(selected_cols)
|
251
|
-
|
252
|
-
estimator = self._sklearn_object
|
253
|
-
assert estimator is not None # Keep mypy happy
|
254
|
-
|
255
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
256
|
-
|
257
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
258
|
-
dataset,
|
259
|
-
session,
|
260
|
-
estimator,
|
261
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
262
|
-
self.input_cols,
|
263
|
-
self.label_cols,
|
264
|
-
self.sample_weight_col,
|
265
|
-
)
|
266
|
-
|
267
272
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
268
273
|
if self._drop_input_cols:
|
269
274
|
return []
|
@@ -451,11 +456,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
451
456
|
subproject=_SUBPROJECT,
|
452
457
|
custom_tags=dict([("autogen", True)]),
|
453
458
|
)
|
454
|
-
@telemetry.add_stmt_params_to_df(
|
455
|
-
project=_PROJECT,
|
456
|
-
subproject=_SUBPROJECT,
|
457
|
-
custom_tags=dict([("autogen", True)]),
|
458
|
-
)
|
459
459
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
460
460
|
"""Predict multi-class targets using underlying estimators
|
461
461
|
For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.predict]
|
@@ -509,11 +509,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
509
509
|
subproject=_SUBPROJECT,
|
510
510
|
custom_tags=dict([("autogen", True)]),
|
511
511
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
512
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
513
|
"""Method not supported for this class.
|
519
514
|
|
@@ -570,7 +565,8 @@ class OutputCodeClassifier(BaseTransformer):
|
|
570
565
|
if False:
|
571
566
|
self.fit(dataset)
|
572
567
|
assert self._sklearn_object is not None
|
573
|
-
|
568
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
569
|
+
return labels
|
574
570
|
else:
|
575
571
|
raise NotImplementedError
|
576
572
|
|
@@ -606,6 +602,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
606
602
|
output_cols = []
|
607
603
|
|
608
604
|
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
609
606
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
610
607
|
|
611
608
|
return rv
|
@@ -616,11 +613,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
616
613
|
subproject=_SUBPROJECT,
|
617
614
|
custom_tags=dict([("autogen", True)]),
|
618
615
|
)
|
619
|
-
@telemetry.add_stmt_params_to_df(
|
620
|
-
project=_PROJECT,
|
621
|
-
subproject=_SUBPROJECT,
|
622
|
-
custom_tags=dict([("autogen", True)]),
|
623
|
-
)
|
624
616
|
def predict_proba(
|
625
617
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
626
618
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -661,11 +653,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
661
653
|
subproject=_SUBPROJECT,
|
662
654
|
custom_tags=dict([("autogen", True)]),
|
663
655
|
)
|
664
|
-
@telemetry.add_stmt_params_to_df(
|
665
|
-
project=_PROJECT,
|
666
|
-
subproject=_SUBPROJECT,
|
667
|
-
custom_tags=dict([("autogen", True)]),
|
668
|
-
)
|
669
656
|
def predict_log_proba(
|
670
657
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
671
658
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -702,16 +689,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
702
689
|
return output_df
|
703
690
|
|
704
691
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
705
|
-
@telemetry.send_api_usage_telemetry(
|
706
|
-
project=_PROJECT,
|
707
|
-
subproject=_SUBPROJECT,
|
708
|
-
custom_tags=dict([("autogen", True)]),
|
709
|
-
)
|
710
|
-
@telemetry.add_stmt_params_to_df(
|
711
|
-
project=_PROJECT,
|
712
|
-
subproject=_SUBPROJECT,
|
713
|
-
custom_tags=dict([("autogen", True)]),
|
714
|
-
)
|
715
692
|
def decision_function(
|
716
693
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
717
694
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -812,11 +789,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
812
789
|
subproject=_SUBPROJECT,
|
813
790
|
custom_tags=dict([("autogen", True)]),
|
814
791
|
)
|
815
|
-
@telemetry.add_stmt_params_to_df(
|
816
|
-
project=_PROJECT,
|
817
|
-
subproject=_SUBPROJECT,
|
818
|
-
custom_tags=dict([("autogen", True)]),
|
819
|
-
)
|
820
792
|
def kneighbors(
|
821
793
|
self,
|
822
794
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -876,9 +848,9 @@ class OutputCodeClassifier(BaseTransformer):
|
|
876
848
|
# For classifier, the type of predict is the same as the type of label
|
877
849
|
if self._sklearn_object._estimator_type == 'classifier':
|
878
850
|
# label columns is the desired type for output
|
879
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
851
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
880
852
|
# rename the output columns
|
881
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
853
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
882
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
883
855
|
([] if self._drop_input_cols else inputs)
|
884
856
|
+ outputs)
|