snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class OutputCodeClassifier(BaseTransformer):
57
58
  r"""(Error-Correcting) Output-Code multiclass strategy
58
59
  For more details on this class, see [sklearn.multiclass.OutputCodeClassifier]
@@ -60,64 +61,73 @@ class OutputCodeClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- estimator: estimator object
64
- An estimator object implementing :term:`fit` and one of
65
- :term:`decision_function` or :term:`predict_proba`.
66
-
67
- code_size: float, default=1.5
68
- Percentage of the number of classes to be used to create the code book.
69
- A number between 0 and 1 will require fewer classifiers than
70
- one-vs-the-rest. A number greater than 1 will require more classifiers
71
- than one-vs-the-rest.
72
-
73
- random_state: int, RandomState instance, default=None
74
- The generator used to initialize the codebook.
75
- Pass an int for reproducible output across multiple function calls.
76
- See :term:`Glossary <random_state>`.
77
-
78
- n_jobs: int, default=None
79
- The number of jobs to use for the computation: the multiclass problems
80
- are computed in parallel.
81
-
82
- ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
83
- ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
84
- for more details.
85
64
 
86
65
  input_cols: Optional[Union[str, List[str]]]
87
66
  A string or list of strings representing column names that contain features.
88
67
  If this parameter is not specified, all columns in the input DataFrame except
89
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
90
- parameters are considered input columns.
91
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
92
72
  label_cols: Optional[Union[str, List[str]]]
93
73
  A string or list of strings representing column names that contain labels.
94
- This is a required param for estimators, as there is no way to infer these
95
- columns. If this parameter is not specified, then object is fitted without
96
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
97
76
 
98
77
  output_cols: Optional[Union[str, List[str]]]
99
78
  A string or list of strings representing column names that will store the
100
79
  output of predict and transform operations. The length of output_cols must
101
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
102
81
  transformer class used.
103
- If this parameter is not specified, output column names are derived by
104
- adding an OUTPUT_ prefix to the label column names. These inferred output
105
- column names work for estimator's predict() method, but output_cols must
106
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
107
91
 
108
92
  sample_weight_col: Optional[str]
109
93
  A string representing the column name containing the sample weights.
110
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
111
97
 
112
98
  passthrough_cols: Optional[Union[str, List[str]]]
113
99
  A string or a list of strings indicating column names to be excluded from any
114
100
  operations (such as train, transform, or inference). These specified column(s)
115
101
  will remain untouched throughout the process. This option is helpful in scenarios
116
102
  requiring automatic input_cols inference, but need to avoid using specific
117
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
118
105
 
119
106
  drop_input_cols: Optional[bool], default=False
120
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ estimator: estimator object
110
+ An estimator object implementing :term:`fit` and one of
111
+ :term:`decision_function` or :term:`predict_proba`.
112
+
113
+ code_size: float, default=1.5
114
+ Percentage of the number of classes to be used to create the code book.
115
+ A number between 0 and 1 will require fewer classifiers than
116
+ one-vs-the-rest. A number greater than 1 will require more classifiers
117
+ than one-vs-the-rest.
118
+
119
+ random_state: int, RandomState instance, default=None
120
+ The generator used to initialize the codebook.
121
+ Pass an int for reproducible output across multiple function calls.
122
+ See :term:`Glossary <random_state>`.
123
+
124
+ n_jobs: int, default=None
125
+ The number of jobs to use for the computation: the multiclass problems
126
+ are computed in parallel.
127
+
128
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
129
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
130
+ for more details.
121
131
  """
122
132
 
123
133
  def __init__( # type: ignore[no-untyped-def]
@@ -142,7 +152,7 @@ class OutputCodeClassifier(BaseTransformer):
142
152
  self.set_passthrough_cols(passthrough_cols)
143
153
  self.set_drop_input_cols(drop_input_cols)
144
154
  self.set_sample_weight_col(sample_weight_col)
145
- deps = set(SklearnWrapperProvider().dependencies)
155
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
146
156
  deps = deps | gather_dependencies(estimator)
147
157
  self._deps = list(deps)
148
158
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -154,13 +164,14 @@ class OutputCodeClassifier(BaseTransformer):
154
164
  args=init_args,
155
165
  klass=sklearn.multiclass.OutputCodeClassifier
156
166
  )
157
- self._sklearn_object = sklearn.multiclass.OutputCodeClassifier(
167
+ self._sklearn_object: Any = sklearn.multiclass.OutputCodeClassifier(
158
168
  **cleaned_up_init_args,
159
169
  )
160
170
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
161
171
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
162
172
  self._snowpark_cols: Optional[List[str]] = self.input_cols
163
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
173
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
174
+ self._autogenerated = True
164
175
 
165
176
  def _get_rand_id(self) -> str:
166
177
  """
@@ -216,54 +227,48 @@ class OutputCodeClassifier(BaseTransformer):
216
227
  self
217
228
  """
218
229
  self._infer_input_output_cols(dataset)
219
- if isinstance(dataset, pd.DataFrame):
220
- assert self._sklearn_object is not None # keep mypy happy
221
- self._sklearn_object = self._handlers.fit_pandas(
222
- dataset,
223
- self._sklearn_object,
224
- self.input_cols,
225
- self.label_cols,
226
- self.sample_weight_col
227
- )
228
- elif isinstance(dataset, DataFrame):
229
- self._fit_snowpark(dataset)
230
- else:
231
- raise TypeError(
232
- f"Unexpected dataset type: {type(dataset)}."
233
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
234
- )
230
+ if isinstance(dataset, DataFrame):
231
+ session = dataset._session
232
+ assert session is not None # keep mypy happy
233
+ # Validate that key package version in user workspace are supported in snowflake conda channel
234
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
235
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
236
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
237
+
238
+ # Specify input columns so column pruning will be enforced
239
+ selected_cols = self._get_active_columns()
240
+ if len(selected_cols) > 0:
241
+ dataset = dataset.select(selected_cols)
242
+
243
+ self._snowpark_cols = dataset.select(self.input_cols).columns
244
+
245
+ # If we are already in a stored procedure, no need to kick off another one.
246
+ if SNOWML_SPROC_ENV in os.environ:
247
+ statement_params = telemetry.get_function_usage_statement_params(
248
+ project=_PROJECT,
249
+ subproject=_SUBPROJECT,
250
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OutputCodeClassifier.__class__.__name__),
251
+ api_calls=[Session.call],
252
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
+ )
254
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
255
+ pd_df.columns = dataset.columns
256
+ dataset = pd_df
257
+
258
+ model_trainer = ModelTrainerBuilder.build(
259
+ estimator=self._sklearn_object,
260
+ dataset=dataset,
261
+ input_cols=self.input_cols,
262
+ label_cols=self.label_cols,
263
+ sample_weight_col=self.sample_weight_col,
264
+ autogenerated=self._autogenerated,
265
+ subproject=_SUBPROJECT
266
+ )
267
+ self._sklearn_object = model_trainer.train()
235
268
  self._is_fitted = True
236
269
  self._get_model_signatures(dataset)
237
270
  return self
238
271
 
239
- def _fit_snowpark(self, dataset: DataFrame) -> None:
240
- session = dataset._session
241
- assert session is not None # keep mypy happy
242
- # Validate that key package version in user workspace are supported in snowflake conda channel
243
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
244
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
245
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
246
-
247
- # Specify input columns so column pruning will be enforced
248
- selected_cols = self._get_active_columns()
249
- if len(selected_cols) > 0:
250
- dataset = dataset.select(selected_cols)
251
-
252
- estimator = self._sklearn_object
253
- assert estimator is not None # Keep mypy happy
254
-
255
- self._snowpark_cols = dataset.select(self.input_cols).columns
256
-
257
- self._sklearn_object = self._handlers.fit_snowpark(
258
- dataset,
259
- session,
260
- estimator,
261
- ["snowflake-snowpark-python"] + self._get_dependencies(),
262
- self.input_cols,
263
- self.label_cols,
264
- self.sample_weight_col,
265
- )
266
-
267
272
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
268
273
  if self._drop_input_cols:
269
274
  return []
@@ -451,11 +456,6 @@ class OutputCodeClassifier(BaseTransformer):
451
456
  subproject=_SUBPROJECT,
452
457
  custom_tags=dict([("autogen", True)]),
453
458
  )
454
- @telemetry.add_stmt_params_to_df(
455
- project=_PROJECT,
456
- subproject=_SUBPROJECT,
457
- custom_tags=dict([("autogen", True)]),
458
- )
459
459
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
460
460
  """Predict multi-class targets using underlying estimators
461
461
  For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.predict]
@@ -509,11 +509,6 @@ class OutputCodeClassifier(BaseTransformer):
509
509
  subproject=_SUBPROJECT,
510
510
  custom_tags=dict([("autogen", True)]),
511
511
  )
512
- @telemetry.add_stmt_params_to_df(
513
- project=_PROJECT,
514
- subproject=_SUBPROJECT,
515
- custom_tags=dict([("autogen", True)]),
516
- )
517
512
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
518
513
  """Method not supported for this class.
519
514
 
@@ -570,7 +565,8 @@ class OutputCodeClassifier(BaseTransformer):
570
565
  if False:
571
566
  self.fit(dataset)
572
567
  assert self._sklearn_object is not None
573
- return self._sklearn_object.labels_
568
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
569
+ return labels
574
570
  else:
575
571
  raise NotImplementedError
576
572
 
@@ -606,6 +602,7 @@ class OutputCodeClassifier(BaseTransformer):
606
602
  output_cols = []
607
603
 
608
604
  # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
609
606
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
610
607
 
611
608
  return rv
@@ -616,11 +613,6 @@ class OutputCodeClassifier(BaseTransformer):
616
613
  subproject=_SUBPROJECT,
617
614
  custom_tags=dict([("autogen", True)]),
618
615
  )
619
- @telemetry.add_stmt_params_to_df(
620
- project=_PROJECT,
621
- subproject=_SUBPROJECT,
622
- custom_tags=dict([("autogen", True)]),
623
- )
624
616
  def predict_proba(
625
617
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
626
618
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -661,11 +653,6 @@ class OutputCodeClassifier(BaseTransformer):
661
653
  subproject=_SUBPROJECT,
662
654
  custom_tags=dict([("autogen", True)]),
663
655
  )
664
- @telemetry.add_stmt_params_to_df(
665
- project=_PROJECT,
666
- subproject=_SUBPROJECT,
667
- custom_tags=dict([("autogen", True)]),
668
- )
669
656
  def predict_log_proba(
670
657
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
671
658
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -702,16 +689,6 @@ class OutputCodeClassifier(BaseTransformer):
702
689
  return output_df
703
690
 
704
691
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
705
- @telemetry.send_api_usage_telemetry(
706
- project=_PROJECT,
707
- subproject=_SUBPROJECT,
708
- custom_tags=dict([("autogen", True)]),
709
- )
710
- @telemetry.add_stmt_params_to_df(
711
- project=_PROJECT,
712
- subproject=_SUBPROJECT,
713
- custom_tags=dict([("autogen", True)]),
714
- )
715
692
  def decision_function(
716
693
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
717
694
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -812,11 +789,6 @@ class OutputCodeClassifier(BaseTransformer):
812
789
  subproject=_SUBPROJECT,
813
790
  custom_tags=dict([("autogen", True)]),
814
791
  )
815
- @telemetry.add_stmt_params_to_df(
816
- project=_PROJECT,
817
- subproject=_SUBPROJECT,
818
- custom_tags=dict([("autogen", True)]),
819
- )
820
792
  def kneighbors(
821
793
  self,
822
794
  dataset: Union[DataFrame, pd.DataFrame],
@@ -876,9 +848,9 @@ class OutputCodeClassifier(BaseTransformer):
876
848
  # For classifier, the type of predict is the same as the type of label
877
849
  if self._sklearn_object._estimator_type == 'classifier':
878
850
  # label columns is the desired type for output
879
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
851
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
880
852
  # rename the output columns
881
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
853
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
882
854
  self._model_signature_dict["predict"] = ModelSignature(inputs,
883
855
  ([] if self._drop_input_cols else inputs)
884
856
  + outputs)