snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoLarsCV(BaseTransformer):
|
57
58
|
r"""Cross-validated Lasso, using the LARS algorithm
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoLarsCV]
|
@@ -60,6 +61,51 @@ class LassoLarsCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
fit_intercept: bool, default=True
|
64
110
|
Whether to calculate the intercept for this model. If set
|
65
111
|
to false, no intercept will be used in calculations
|
@@ -129,42 +175,6 @@ class LassoLarsCV(BaseTransformer):
|
|
129
175
|
coordinate descent Lasso estimator.
|
130
176
|
As a consequence using LassoLarsCV only makes sense for problems where
|
131
177
|
a sparse solution is expected and/or reached.
|
132
|
-
|
133
|
-
input_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that contain features.
|
135
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
136
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
137
|
-
parameters are considered input columns.
|
138
|
-
|
139
|
-
label_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that contain labels.
|
141
|
-
This is a required param for estimators, as there is no way to infer these
|
142
|
-
columns. If this parameter is not specified, then object is fitted without
|
143
|
-
labels (like a transformer).
|
144
|
-
|
145
|
-
output_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that will store the
|
147
|
-
output of predict and transform operations. The length of output_cols must
|
148
|
-
match the expected number of output columns from the specific estimator or
|
149
|
-
transformer class used.
|
150
|
-
If this parameter is not specified, output column names are derived by
|
151
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
152
|
-
column names work for estimator's predict() method, but output_cols must
|
153
|
-
be set explicitly for transformers.
|
154
|
-
|
155
|
-
sample_weight_col: Optional[str]
|
156
|
-
A string representing the column name containing the sample weights.
|
157
|
-
This argument is only required when working with weighted datasets.
|
158
|
-
|
159
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or a list of strings indicating column names to be excluded from any
|
161
|
-
operations (such as train, transform, or inference). These specified column(s)
|
162
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
163
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
164
|
-
columns, like index columns, during training or inference.
|
165
|
-
|
166
|
-
drop_input_cols: Optional[bool], default=False
|
167
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
168
178
|
"""
|
169
179
|
|
170
180
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -196,7 +206,7 @@ class LassoLarsCV(BaseTransformer):
|
|
196
206
|
self.set_passthrough_cols(passthrough_cols)
|
197
207
|
self.set_drop_input_cols(drop_input_cols)
|
198
208
|
self.set_sample_weight_col(sample_weight_col)
|
199
|
-
deps = set(
|
209
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
200
210
|
|
201
211
|
self._deps = list(deps)
|
202
212
|
|
@@ -215,13 +225,14 @@ class LassoLarsCV(BaseTransformer):
|
|
215
225
|
args=init_args,
|
216
226
|
klass=sklearn.linear_model.LassoLarsCV
|
217
227
|
)
|
218
|
-
self._sklearn_object = sklearn.linear_model.LassoLarsCV(
|
228
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoLarsCV(
|
219
229
|
**cleaned_up_init_args,
|
220
230
|
)
|
221
231
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
222
232
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
223
233
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
224
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
234
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
235
|
+
self._autogenerated = True
|
225
236
|
|
226
237
|
def _get_rand_id(self) -> str:
|
227
238
|
"""
|
@@ -277,54 +288,48 @@ class LassoLarsCV(BaseTransformer):
|
|
277
288
|
self
|
278
289
|
"""
|
279
290
|
self._infer_input_output_cols(dataset)
|
280
|
-
if isinstance(dataset,
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
self.
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
291
|
+
if isinstance(dataset, DataFrame):
|
292
|
+
session = dataset._session
|
293
|
+
assert session is not None # keep mypy happy
|
294
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
295
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
296
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
297
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
298
|
+
|
299
|
+
# Specify input columns so column pruning will be enforced
|
300
|
+
selected_cols = self._get_active_columns()
|
301
|
+
if len(selected_cols) > 0:
|
302
|
+
dataset = dataset.select(selected_cols)
|
303
|
+
|
304
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
305
|
+
|
306
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
307
|
+
if SNOWML_SPROC_ENV in os.environ:
|
308
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
309
|
+
project=_PROJECT,
|
310
|
+
subproject=_SUBPROJECT,
|
311
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsCV.__class__.__name__),
|
312
|
+
api_calls=[Session.call],
|
313
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
314
|
+
)
|
315
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
316
|
+
pd_df.columns = dataset.columns
|
317
|
+
dataset = pd_df
|
318
|
+
|
319
|
+
model_trainer = ModelTrainerBuilder.build(
|
320
|
+
estimator=self._sklearn_object,
|
321
|
+
dataset=dataset,
|
322
|
+
input_cols=self.input_cols,
|
323
|
+
label_cols=self.label_cols,
|
324
|
+
sample_weight_col=self.sample_weight_col,
|
325
|
+
autogenerated=self._autogenerated,
|
326
|
+
subproject=_SUBPROJECT
|
327
|
+
)
|
328
|
+
self._sklearn_object = model_trainer.train()
|
296
329
|
self._is_fitted = True
|
297
330
|
self._get_model_signatures(dataset)
|
298
331
|
return self
|
299
332
|
|
300
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
301
|
-
session = dataset._session
|
302
|
-
assert session is not None # keep mypy happy
|
303
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
304
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
305
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
306
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
307
|
-
|
308
|
-
# Specify input columns so column pruning will be enforced
|
309
|
-
selected_cols = self._get_active_columns()
|
310
|
-
if len(selected_cols) > 0:
|
311
|
-
dataset = dataset.select(selected_cols)
|
312
|
-
|
313
|
-
estimator = self._sklearn_object
|
314
|
-
assert estimator is not None # Keep mypy happy
|
315
|
-
|
316
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
317
|
-
|
318
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
319
|
-
dataset,
|
320
|
-
session,
|
321
|
-
estimator,
|
322
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
323
|
-
self.input_cols,
|
324
|
-
self.label_cols,
|
325
|
-
self.sample_weight_col,
|
326
|
-
)
|
327
|
-
|
328
333
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
329
334
|
if self._drop_input_cols:
|
330
335
|
return []
|
@@ -512,11 +517,6 @@ class LassoLarsCV(BaseTransformer):
|
|
512
517
|
subproject=_SUBPROJECT,
|
513
518
|
custom_tags=dict([("autogen", True)]),
|
514
519
|
)
|
515
|
-
@telemetry.add_stmt_params_to_df(
|
516
|
-
project=_PROJECT,
|
517
|
-
subproject=_SUBPROJECT,
|
518
|
-
custom_tags=dict([("autogen", True)]),
|
519
|
-
)
|
520
520
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
521
521
|
"""Predict using the linear model
|
522
522
|
For more details on this function, see [sklearn.linear_model.LassoLarsCV.predict]
|
@@ -570,11 +570,6 @@ class LassoLarsCV(BaseTransformer):
|
|
570
570
|
subproject=_SUBPROJECT,
|
571
571
|
custom_tags=dict([("autogen", True)]),
|
572
572
|
)
|
573
|
-
@telemetry.add_stmt_params_to_df(
|
574
|
-
project=_PROJECT,
|
575
|
-
subproject=_SUBPROJECT,
|
576
|
-
custom_tags=dict([("autogen", True)]),
|
577
|
-
)
|
578
573
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
579
574
|
"""Method not supported for this class.
|
580
575
|
|
@@ -631,7 +626,8 @@ class LassoLarsCV(BaseTransformer):
|
|
631
626
|
if False:
|
632
627
|
self.fit(dataset)
|
633
628
|
assert self._sklearn_object is not None
|
634
|
-
|
629
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
630
|
+
return labels
|
635
631
|
else:
|
636
632
|
raise NotImplementedError
|
637
633
|
|
@@ -667,6 +663,7 @@ class LassoLarsCV(BaseTransformer):
|
|
667
663
|
output_cols = []
|
668
664
|
|
669
665
|
# Make sure column names are valid snowflake identifiers.
|
666
|
+
assert output_cols is not None # Make MyPy happy
|
670
667
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
671
668
|
|
672
669
|
return rv
|
@@ -677,11 +674,6 @@ class LassoLarsCV(BaseTransformer):
|
|
677
674
|
subproject=_SUBPROJECT,
|
678
675
|
custom_tags=dict([("autogen", True)]),
|
679
676
|
)
|
680
|
-
@telemetry.add_stmt_params_to_df(
|
681
|
-
project=_PROJECT,
|
682
|
-
subproject=_SUBPROJECT,
|
683
|
-
custom_tags=dict([("autogen", True)]),
|
684
|
-
)
|
685
677
|
def predict_proba(
|
686
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
687
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -722,11 +714,6 @@ class LassoLarsCV(BaseTransformer):
|
|
722
714
|
subproject=_SUBPROJECT,
|
723
715
|
custom_tags=dict([("autogen", True)]),
|
724
716
|
)
|
725
|
-
@telemetry.add_stmt_params_to_df(
|
726
|
-
project=_PROJECT,
|
727
|
-
subproject=_SUBPROJECT,
|
728
|
-
custom_tags=dict([("autogen", True)]),
|
729
|
-
)
|
730
717
|
def predict_log_proba(
|
731
718
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
732
719
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -763,16 +750,6 @@ class LassoLarsCV(BaseTransformer):
|
|
763
750
|
return output_df
|
764
751
|
|
765
752
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
766
|
-
@telemetry.send_api_usage_telemetry(
|
767
|
-
project=_PROJECT,
|
768
|
-
subproject=_SUBPROJECT,
|
769
|
-
custom_tags=dict([("autogen", True)]),
|
770
|
-
)
|
771
|
-
@telemetry.add_stmt_params_to_df(
|
772
|
-
project=_PROJECT,
|
773
|
-
subproject=_SUBPROJECT,
|
774
|
-
custom_tags=dict([("autogen", True)]),
|
775
|
-
)
|
776
753
|
def decision_function(
|
777
754
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
778
755
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -873,11 +850,6 @@ class LassoLarsCV(BaseTransformer):
|
|
873
850
|
subproject=_SUBPROJECT,
|
874
851
|
custom_tags=dict([("autogen", True)]),
|
875
852
|
)
|
876
|
-
@telemetry.add_stmt_params_to_df(
|
877
|
-
project=_PROJECT,
|
878
|
-
subproject=_SUBPROJECT,
|
879
|
-
custom_tags=dict([("autogen", True)]),
|
880
|
-
)
|
881
853
|
def kneighbors(
|
882
854
|
self,
|
883
855
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -937,9 +909,9 @@ class LassoLarsCV(BaseTransformer):
|
|
937
909
|
# For classifier, the type of predict is the same as the type of label
|
938
910
|
if self._sklearn_object._estimator_type == 'classifier':
|
939
911
|
# label columns is the desired type for output
|
940
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
912
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
941
913
|
# rename the output columns
|
942
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
914
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
943
915
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
944
916
|
([] if self._drop_input_cols else inputs)
|
945
917
|
+ outputs)
|