snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LassoLarsCV(BaseTransformer):
57
58
  r"""Cross-validated Lasso, using the LARS algorithm
58
59
  For more details on this class, see [sklearn.linear_model.LassoLarsCV]
@@ -60,6 +61,51 @@ class LassoLarsCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations
@@ -129,42 +175,6 @@ class LassoLarsCV(BaseTransformer):
129
175
  coordinate descent Lasso estimator.
130
176
  As a consequence using LassoLarsCV only makes sense for problems where
131
177
  a sparse solution is expected and/or reached.
132
-
133
- input_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that contain features.
135
- If this parameter is not specified, all columns in the input DataFrame except
136
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
137
- parameters are considered input columns.
138
-
139
- label_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that contain labels.
141
- This is a required param for estimators, as there is no way to infer these
142
- columns. If this parameter is not specified, then object is fitted without
143
- labels (like a transformer).
144
-
145
- output_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that will store the
147
- output of predict and transform operations. The length of output_cols must
148
- match the expected number of output columns from the specific estimator or
149
- transformer class used.
150
- If this parameter is not specified, output column names are derived by
151
- adding an OUTPUT_ prefix to the label column names. These inferred output
152
- column names work for estimator's predict() method, but output_cols must
153
- be set explicitly for transformers.
154
-
155
- sample_weight_col: Optional[str]
156
- A string representing the column name containing the sample weights.
157
- This argument is only required when working with weighted datasets.
158
-
159
- passthrough_cols: Optional[Union[str, List[str]]]
160
- A string or a list of strings indicating column names to be excluded from any
161
- operations (such as train, transform, or inference). These specified column(s)
162
- will remain untouched throughout the process. This option is helpful in scenarios
163
- requiring automatic input_cols inference, but need to avoid using specific
164
- columns, like index columns, during training or inference.
165
-
166
- drop_input_cols: Optional[bool], default=False
167
- If set, the response of predict(), transform() methods will not contain input columns.
168
178
  """
169
179
 
170
180
  def __init__( # type: ignore[no-untyped-def]
@@ -196,7 +206,7 @@ class LassoLarsCV(BaseTransformer):
196
206
  self.set_passthrough_cols(passthrough_cols)
197
207
  self.set_drop_input_cols(drop_input_cols)
198
208
  self.set_sample_weight_col(sample_weight_col)
199
- deps = set(SklearnWrapperProvider().dependencies)
209
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
200
210
 
201
211
  self._deps = list(deps)
202
212
 
@@ -215,13 +225,14 @@ class LassoLarsCV(BaseTransformer):
215
225
  args=init_args,
216
226
  klass=sklearn.linear_model.LassoLarsCV
217
227
  )
218
- self._sklearn_object = sklearn.linear_model.LassoLarsCV(
228
+ self._sklearn_object: Any = sklearn.linear_model.LassoLarsCV(
219
229
  **cleaned_up_init_args,
220
230
  )
221
231
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
222
232
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
223
233
  self._snowpark_cols: Optional[List[str]] = self.input_cols
224
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
234
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
235
+ self._autogenerated = True
225
236
 
226
237
  def _get_rand_id(self) -> str:
227
238
  """
@@ -277,54 +288,48 @@ class LassoLarsCV(BaseTransformer):
277
288
  self
278
289
  """
279
290
  self._infer_input_output_cols(dataset)
280
- if isinstance(dataset, pd.DataFrame):
281
- assert self._sklearn_object is not None # keep mypy happy
282
- self._sklearn_object = self._handlers.fit_pandas(
283
- dataset,
284
- self._sklearn_object,
285
- self.input_cols,
286
- self.label_cols,
287
- self.sample_weight_col
288
- )
289
- elif isinstance(dataset, DataFrame):
290
- self._fit_snowpark(dataset)
291
- else:
292
- raise TypeError(
293
- f"Unexpected dataset type: {type(dataset)}."
294
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
295
- )
291
+ if isinstance(dataset, DataFrame):
292
+ session = dataset._session
293
+ assert session is not None # keep mypy happy
294
+ # Validate that key package version in user workspace are supported in snowflake conda channel
295
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
296
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
297
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
298
+
299
+ # Specify input columns so column pruning will be enforced
300
+ selected_cols = self._get_active_columns()
301
+ if len(selected_cols) > 0:
302
+ dataset = dataset.select(selected_cols)
303
+
304
+ self._snowpark_cols = dataset.select(self.input_cols).columns
305
+
306
+ # If we are already in a stored procedure, no need to kick off another one.
307
+ if SNOWML_SPROC_ENV in os.environ:
308
+ statement_params = telemetry.get_function_usage_statement_params(
309
+ project=_PROJECT,
310
+ subproject=_SUBPROJECT,
311
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsCV.__class__.__name__),
312
+ api_calls=[Session.call],
313
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ )
315
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
316
+ pd_df.columns = dataset.columns
317
+ dataset = pd_df
318
+
319
+ model_trainer = ModelTrainerBuilder.build(
320
+ estimator=self._sklearn_object,
321
+ dataset=dataset,
322
+ input_cols=self.input_cols,
323
+ label_cols=self.label_cols,
324
+ sample_weight_col=self.sample_weight_col,
325
+ autogenerated=self._autogenerated,
326
+ subproject=_SUBPROJECT
327
+ )
328
+ self._sklearn_object = model_trainer.train()
296
329
  self._is_fitted = True
297
330
  self._get_model_signatures(dataset)
298
331
  return self
299
332
 
300
- def _fit_snowpark(self, dataset: DataFrame) -> None:
301
- session = dataset._session
302
- assert session is not None # keep mypy happy
303
- # Validate that key package version in user workspace are supported in snowflake conda channel
304
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
305
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
306
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
307
-
308
- # Specify input columns so column pruning will be enforced
309
- selected_cols = self._get_active_columns()
310
- if len(selected_cols) > 0:
311
- dataset = dataset.select(selected_cols)
312
-
313
- estimator = self._sklearn_object
314
- assert estimator is not None # Keep mypy happy
315
-
316
- self._snowpark_cols = dataset.select(self.input_cols).columns
317
-
318
- self._sklearn_object = self._handlers.fit_snowpark(
319
- dataset,
320
- session,
321
- estimator,
322
- ["snowflake-snowpark-python"] + self._get_dependencies(),
323
- self.input_cols,
324
- self.label_cols,
325
- self.sample_weight_col,
326
- )
327
-
328
333
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
329
334
  if self._drop_input_cols:
330
335
  return []
@@ -512,11 +517,6 @@ class LassoLarsCV(BaseTransformer):
512
517
  subproject=_SUBPROJECT,
513
518
  custom_tags=dict([("autogen", True)]),
514
519
  )
515
- @telemetry.add_stmt_params_to_df(
516
- project=_PROJECT,
517
- subproject=_SUBPROJECT,
518
- custom_tags=dict([("autogen", True)]),
519
- )
520
520
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
521
521
  """Predict using the linear model
522
522
  For more details on this function, see [sklearn.linear_model.LassoLarsCV.predict]
@@ -570,11 +570,6 @@ class LassoLarsCV(BaseTransformer):
570
570
  subproject=_SUBPROJECT,
571
571
  custom_tags=dict([("autogen", True)]),
572
572
  )
573
- @telemetry.add_stmt_params_to_df(
574
- project=_PROJECT,
575
- subproject=_SUBPROJECT,
576
- custom_tags=dict([("autogen", True)]),
577
- )
578
573
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
579
574
  """Method not supported for this class.
580
575
 
@@ -631,7 +626,8 @@ class LassoLarsCV(BaseTransformer):
631
626
  if False:
632
627
  self.fit(dataset)
633
628
  assert self._sklearn_object is not None
634
- return self._sklearn_object.labels_
629
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
630
+ return labels
635
631
  else:
636
632
  raise NotImplementedError
637
633
 
@@ -667,6 +663,7 @@ class LassoLarsCV(BaseTransformer):
667
663
  output_cols = []
668
664
 
669
665
  # Make sure column names are valid snowflake identifiers.
666
+ assert output_cols is not None # Make MyPy happy
670
667
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
671
668
 
672
669
  return rv
@@ -677,11 +674,6 @@ class LassoLarsCV(BaseTransformer):
677
674
  subproject=_SUBPROJECT,
678
675
  custom_tags=dict([("autogen", True)]),
679
676
  )
680
- @telemetry.add_stmt_params_to_df(
681
- project=_PROJECT,
682
- subproject=_SUBPROJECT,
683
- custom_tags=dict([("autogen", True)]),
684
- )
685
677
  def predict_proba(
686
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
687
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -722,11 +714,6 @@ class LassoLarsCV(BaseTransformer):
722
714
  subproject=_SUBPROJECT,
723
715
  custom_tags=dict([("autogen", True)]),
724
716
  )
725
- @telemetry.add_stmt_params_to_df(
726
- project=_PROJECT,
727
- subproject=_SUBPROJECT,
728
- custom_tags=dict([("autogen", True)]),
729
- )
730
717
  def predict_log_proba(
731
718
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
732
719
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -763,16 +750,6 @@ class LassoLarsCV(BaseTransformer):
763
750
  return output_df
764
751
 
765
752
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
766
- @telemetry.send_api_usage_telemetry(
767
- project=_PROJECT,
768
- subproject=_SUBPROJECT,
769
- custom_tags=dict([("autogen", True)]),
770
- )
771
- @telemetry.add_stmt_params_to_df(
772
- project=_PROJECT,
773
- subproject=_SUBPROJECT,
774
- custom_tags=dict([("autogen", True)]),
775
- )
776
753
  def decision_function(
777
754
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
778
755
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -873,11 +850,6 @@ class LassoLarsCV(BaseTransformer):
873
850
  subproject=_SUBPROJECT,
874
851
  custom_tags=dict([("autogen", True)]),
875
852
  )
876
- @telemetry.add_stmt_params_to_df(
877
- project=_PROJECT,
878
- subproject=_SUBPROJECT,
879
- custom_tags=dict([("autogen", True)]),
880
- )
881
853
  def kneighbors(
882
854
  self,
883
855
  dataset: Union[DataFrame, pd.DataFrame],
@@ -937,9 +909,9 @@ class LassoLarsCV(BaseTransformer):
937
909
  # For classifier, the type of predict is the same as the type of label
938
910
  if self._sklearn_object._estimator_type == 'classifier':
939
911
  # label columns is the desired type for output
940
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
912
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
941
913
  # rename the output columns
942
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
914
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
943
915
  self._model_signature_dict["predict"] = ModelSignature(inputs,
944
916
  ([] if self._drop_input_cols else inputs)
945
917
  + outputs)