snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBClassifier(BaseTransformer):
|
56
57
|
r"""Implementation of the scikit-learn API for XGBoost classification
|
57
58
|
For more details on this class, see [xgboost.XGBClassifier]
|
@@ -60,7 +61,51 @@ class XGBClassifier(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of boosting rounds.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,42 +312,6 @@ class XGBClassifier(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
275
|
-
parameters are considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
298
|
-
A string or a list of strings indicating column names to be excluded from any
|
299
|
-
operations (such as train, transform, or inference). These specified column(s)
|
300
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
301
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
302
|
-
columns, like index columns, during training or inference.
|
303
|
-
|
304
|
-
drop_input_cols: Optional[bool], default=False
|
305
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
306
315
|
"""
|
307
316
|
|
308
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -326,7 +335,7 @@ class XGBClassifier(BaseTransformer):
|
|
326
335
|
self.set_passthrough_cols(passthrough_cols)
|
327
336
|
self.set_drop_input_cols(drop_input_cols)
|
328
337
|
self.set_sample_weight_col(sample_weight_col)
|
329
|
-
deps = set(
|
338
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
330
339
|
|
331
340
|
self._deps = list(deps)
|
332
341
|
|
@@ -336,14 +345,15 @@ class XGBClassifier(BaseTransformer):
|
|
336
345
|
args=init_args,
|
337
346
|
klass=xgboost.XGBClassifier
|
338
347
|
)
|
339
|
-
self._sklearn_object = xgboost.XGBClassifier(
|
348
|
+
self._sklearn_object: Any = xgboost.XGBClassifier(
|
340
349
|
**cleaned_up_init_args,
|
341
350
|
**kwargs,
|
342
351
|
)
|
343
352
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
344
353
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
345
354
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
346
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
355
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
356
|
+
self._autogenerated = True
|
347
357
|
|
348
358
|
def _get_rand_id(self) -> str:
|
349
359
|
"""
|
@@ -399,54 +409,48 @@ class XGBClassifier(BaseTransformer):
|
|
399
409
|
self
|
400
410
|
"""
|
401
411
|
self._infer_input_output_cols(dataset)
|
402
|
-
if isinstance(dataset,
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
self.
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
412
|
+
if isinstance(dataset, DataFrame):
|
413
|
+
session = dataset._session
|
414
|
+
assert session is not None # keep mypy happy
|
415
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
416
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
417
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
418
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
419
|
+
|
420
|
+
# Specify input columns so column pruning will be enforced
|
421
|
+
selected_cols = self._get_active_columns()
|
422
|
+
if len(selected_cols) > 0:
|
423
|
+
dataset = dataset.select(selected_cols)
|
424
|
+
|
425
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
426
|
+
|
427
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
428
|
+
if SNOWML_SPROC_ENV in os.environ:
|
429
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
430
|
+
project=_PROJECT,
|
431
|
+
subproject=_SUBPROJECT,
|
432
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBClassifier.__class__.__name__),
|
433
|
+
api_calls=[Session.call],
|
434
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
435
|
+
)
|
436
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
437
|
+
pd_df.columns = dataset.columns
|
438
|
+
dataset = pd_df
|
439
|
+
|
440
|
+
model_trainer = ModelTrainerBuilder.build(
|
441
|
+
estimator=self._sklearn_object,
|
442
|
+
dataset=dataset,
|
443
|
+
input_cols=self.input_cols,
|
444
|
+
label_cols=self.label_cols,
|
445
|
+
sample_weight_col=self.sample_weight_col,
|
446
|
+
autogenerated=self._autogenerated,
|
447
|
+
subproject=_SUBPROJECT
|
448
|
+
)
|
449
|
+
self._sklearn_object = model_trainer.train()
|
418
450
|
self._is_fitted = True
|
419
451
|
self._get_model_signatures(dataset)
|
420
452
|
return self
|
421
453
|
|
422
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
423
|
-
session = dataset._session
|
424
|
-
assert session is not None # keep mypy happy
|
425
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
426
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
427
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
428
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
429
|
-
|
430
|
-
# Specify input columns so column pruning will be enforced
|
431
|
-
selected_cols = self._get_active_columns()
|
432
|
-
if len(selected_cols) > 0:
|
433
|
-
dataset = dataset.select(selected_cols)
|
434
|
-
|
435
|
-
estimator = self._sklearn_object
|
436
|
-
assert estimator is not None # Keep mypy happy
|
437
|
-
|
438
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
439
|
-
|
440
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
441
|
-
dataset,
|
442
|
-
session,
|
443
|
-
estimator,
|
444
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
445
|
-
self.input_cols,
|
446
|
-
self.label_cols,
|
447
|
-
self.sample_weight_col,
|
448
|
-
)
|
449
|
-
|
450
454
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
451
455
|
if self._drop_input_cols:
|
452
456
|
return []
|
@@ -634,11 +638,6 @@ class XGBClassifier(BaseTransformer):
|
|
634
638
|
subproject=_SUBPROJECT,
|
635
639
|
custom_tags=dict([("autogen", True)]),
|
636
640
|
)
|
637
|
-
@telemetry.add_stmt_params_to_df(
|
638
|
-
project=_PROJECT,
|
639
|
-
subproject=_SUBPROJECT,
|
640
|
-
custom_tags=dict([("autogen", True)]),
|
641
|
-
)
|
642
641
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
643
642
|
"""Predict with `X`
|
644
643
|
For more details on this function, see [xgboost.XGBClassifier.predict]
|
@@ -692,11 +691,6 @@ class XGBClassifier(BaseTransformer):
|
|
692
691
|
subproject=_SUBPROJECT,
|
693
692
|
custom_tags=dict([("autogen", True)]),
|
694
693
|
)
|
695
|
-
@telemetry.add_stmt_params_to_df(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
694
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
701
695
|
"""Method not supported for this class.
|
702
696
|
|
@@ -753,7 +747,8 @@ class XGBClassifier(BaseTransformer):
|
|
753
747
|
if False:
|
754
748
|
self.fit(dataset)
|
755
749
|
assert self._sklearn_object is not None
|
756
|
-
|
750
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
751
|
+
return labels
|
757
752
|
else:
|
758
753
|
raise NotImplementedError
|
759
754
|
|
@@ -789,6 +784,7 @@ class XGBClassifier(BaseTransformer):
|
|
789
784
|
output_cols = []
|
790
785
|
|
791
786
|
# Make sure column names are valid snowflake identifiers.
|
787
|
+
assert output_cols is not None # Make MyPy happy
|
792
788
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
793
789
|
|
794
790
|
return rv
|
@@ -799,11 +795,6 @@ class XGBClassifier(BaseTransformer):
|
|
799
795
|
subproject=_SUBPROJECT,
|
800
796
|
custom_tags=dict([("autogen", True)]),
|
801
797
|
)
|
802
|
-
@telemetry.add_stmt_params_to_df(
|
803
|
-
project=_PROJECT,
|
804
|
-
subproject=_SUBPROJECT,
|
805
|
-
custom_tags=dict([("autogen", True)]),
|
806
|
-
)
|
807
798
|
def predict_proba(
|
808
799
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
809
800
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -846,11 +837,6 @@ class XGBClassifier(BaseTransformer):
|
|
846
837
|
subproject=_SUBPROJECT,
|
847
838
|
custom_tags=dict([("autogen", True)]),
|
848
839
|
)
|
849
|
-
@telemetry.add_stmt_params_to_df(
|
850
|
-
project=_PROJECT,
|
851
|
-
subproject=_SUBPROJECT,
|
852
|
-
custom_tags=dict([("autogen", True)]),
|
853
|
-
)
|
854
840
|
def predict_log_proba(
|
855
841
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
856
842
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,16 +875,6 @@ class XGBClassifier(BaseTransformer):
|
|
889
875
|
return output_df
|
890
876
|
|
891
877
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
892
|
-
@telemetry.send_api_usage_telemetry(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
|
-
@telemetry.add_stmt_params_to_df(
|
898
|
-
project=_PROJECT,
|
899
|
-
subproject=_SUBPROJECT,
|
900
|
-
custom_tags=dict([("autogen", True)]),
|
901
|
-
)
|
902
878
|
def decision_function(
|
903
879
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
904
880
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -999,11 +975,6 @@ class XGBClassifier(BaseTransformer):
|
|
999
975
|
subproject=_SUBPROJECT,
|
1000
976
|
custom_tags=dict([("autogen", True)]),
|
1001
977
|
)
|
1002
|
-
@telemetry.add_stmt_params_to_df(
|
1003
|
-
project=_PROJECT,
|
1004
|
-
subproject=_SUBPROJECT,
|
1005
|
-
custom_tags=dict([("autogen", True)]),
|
1006
|
-
)
|
1007
978
|
def kneighbors(
|
1008
979
|
self,
|
1009
980
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1063,9 +1034,9 @@ class XGBClassifier(BaseTransformer):
|
|
1063
1034
|
# For classifier, the type of predict is the same as the type of label
|
1064
1035
|
if self._sklearn_object._estimator_type == 'classifier':
|
1065
1036
|
# label columns is the desired type for output
|
1066
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1037
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1067
1038
|
# rename the output columns
|
1068
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1039
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1069
1040
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1070
1041
|
([] if self._drop_input_cols else inputs)
|
1071
1042
|
+ outputs)
|