snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class XGBClassifier(BaseTransformer):
56
57
  r"""Implementation of the scikit-learn API for XGBoost classification
57
58
  For more details on this class, see [xgboost.XGBClassifier]
@@ -60,7 +61,51 @@ class XGBClassifier(BaseTransformer):
60
61
  Parameters
61
62
  ----------
62
63
 
63
- n_estimators: int
64
+ input_cols: Optional[Union[str, List[str]]]
65
+ A string or list of strings representing column names that contain features.
66
+ If this parameter is not specified, all columns in the input DataFrame except
67
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
71
+ label_cols: Optional[Union[str, List[str]]]
72
+ A string or list of strings representing column names that contain labels.
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
108
+ n_estimators: int
64
109
  Number of boosting rounds.
65
110
 
66
111
  max_depth: Optional[int]
@@ -267,42 +312,6 @@ class XGBClassifier(BaseTransformer):
267
312
  The value of the gradient for each sample point.
268
313
  hess: array_like of shape [n_samples]
269
314
  The value of the second derivative for each sample point
270
-
271
- input_cols: Optional[Union[str, List[str]]]
272
- A string or list of strings representing column names that contain features.
273
- If this parameter is not specified, all columns in the input DataFrame except
274
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
275
- parameters are considered input columns.
276
-
277
- label_cols: Optional[Union[str, List[str]]]
278
- A string or list of strings representing column names that contain labels.
279
- This is a required param for estimators, as there is no way to infer these
280
- columns. If this parameter is not specified, then object is fitted without
281
- labels (like a transformer).
282
-
283
- output_cols: Optional[Union[str, List[str]]]
284
- A string or list of strings representing column names that will store the
285
- output of predict and transform operations. The length of output_cols must
286
- match the expected number of output columns from the specific estimator or
287
- transformer class used.
288
- If this parameter is not specified, output column names are derived by
289
- adding an OUTPUT_ prefix to the label column names. These inferred output
290
- column names work for estimator's predict() method, but output_cols must
291
- be set explicitly for transformers.
292
-
293
- sample_weight_col: Optional[str]
294
- A string representing the column name containing the sample weights.
295
- This argument is only required when working with weighted datasets.
296
-
297
- passthrough_cols: Optional[Union[str, List[str]]]
298
- A string or a list of strings indicating column names to be excluded from any
299
- operations (such as train, transform, or inference). These specified column(s)
300
- will remain untouched throughout the process. This option is helpful in scenarios
301
- requiring automatic input_cols inference, but need to avoid using specific
302
- columns, like index columns, during training or inference.
303
-
304
- drop_input_cols: Optional[bool], default=False
305
- If set, the response of predict(), transform() methods will not contain input columns.
306
315
  """
307
316
 
308
317
  def __init__( # type: ignore[no-untyped-def]
@@ -326,7 +335,7 @@ class XGBClassifier(BaseTransformer):
326
335
  self.set_passthrough_cols(passthrough_cols)
327
336
  self.set_drop_input_cols(drop_input_cols)
328
337
  self.set_sample_weight_col(sample_weight_col)
329
- deps = set(XGBoostWrapperProvider().dependencies)
338
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
330
339
 
331
340
  self._deps = list(deps)
332
341
 
@@ -336,14 +345,15 @@ class XGBClassifier(BaseTransformer):
336
345
  args=init_args,
337
346
  klass=xgboost.XGBClassifier
338
347
  )
339
- self._sklearn_object = xgboost.XGBClassifier(
348
+ self._sklearn_object: Any = xgboost.XGBClassifier(
340
349
  **cleaned_up_init_args,
341
350
  **kwargs,
342
351
  )
343
352
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
344
353
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
345
354
  self._snowpark_cols: Optional[List[str]] = self.input_cols
346
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=XGBoostWrapperProvider())
355
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
356
+ self._autogenerated = True
347
357
 
348
358
  def _get_rand_id(self) -> str:
349
359
  """
@@ -399,54 +409,48 @@ class XGBClassifier(BaseTransformer):
399
409
  self
400
410
  """
401
411
  self._infer_input_output_cols(dataset)
402
- if isinstance(dataset, pd.DataFrame):
403
- assert self._sklearn_object is not None # keep mypy happy
404
- self._sklearn_object = self._handlers.fit_pandas(
405
- dataset,
406
- self._sklearn_object,
407
- self.input_cols,
408
- self.label_cols,
409
- self.sample_weight_col
410
- )
411
- elif isinstance(dataset, DataFrame):
412
- self._fit_snowpark(dataset)
413
- else:
414
- raise TypeError(
415
- f"Unexpected dataset type: {type(dataset)}."
416
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
417
- )
412
+ if isinstance(dataset, DataFrame):
413
+ session = dataset._session
414
+ assert session is not None # keep mypy happy
415
+ # Validate that key package version in user workspace are supported in snowflake conda channel
416
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
417
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
418
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
419
+
420
+ # Specify input columns so column pruning will be enforced
421
+ selected_cols = self._get_active_columns()
422
+ if len(selected_cols) > 0:
423
+ dataset = dataset.select(selected_cols)
424
+
425
+ self._snowpark_cols = dataset.select(self.input_cols).columns
426
+
427
+ # If we are already in a stored procedure, no need to kick off another one.
428
+ if SNOWML_SPROC_ENV in os.environ:
429
+ statement_params = telemetry.get_function_usage_statement_params(
430
+ project=_PROJECT,
431
+ subproject=_SUBPROJECT,
432
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBClassifier.__class__.__name__),
433
+ api_calls=[Session.call],
434
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
435
+ )
436
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
437
+ pd_df.columns = dataset.columns
438
+ dataset = pd_df
439
+
440
+ model_trainer = ModelTrainerBuilder.build(
441
+ estimator=self._sklearn_object,
442
+ dataset=dataset,
443
+ input_cols=self.input_cols,
444
+ label_cols=self.label_cols,
445
+ sample_weight_col=self.sample_weight_col,
446
+ autogenerated=self._autogenerated,
447
+ subproject=_SUBPROJECT
448
+ )
449
+ self._sklearn_object = model_trainer.train()
418
450
  self._is_fitted = True
419
451
  self._get_model_signatures(dataset)
420
452
  return self
421
453
 
422
- def _fit_snowpark(self, dataset: DataFrame) -> None:
423
- session = dataset._session
424
- assert session is not None # keep mypy happy
425
- # Validate that key package version in user workspace are supported in snowflake conda channel
426
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
427
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
428
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
429
-
430
- # Specify input columns so column pruning will be enforced
431
- selected_cols = self._get_active_columns()
432
- if len(selected_cols) > 0:
433
- dataset = dataset.select(selected_cols)
434
-
435
- estimator = self._sklearn_object
436
- assert estimator is not None # Keep mypy happy
437
-
438
- self._snowpark_cols = dataset.select(self.input_cols).columns
439
-
440
- self._sklearn_object = self._handlers.fit_snowpark(
441
- dataset,
442
- session,
443
- estimator,
444
- ["snowflake-snowpark-python"] + self._get_dependencies(),
445
- self.input_cols,
446
- self.label_cols,
447
- self.sample_weight_col,
448
- )
449
-
450
454
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
451
455
  if self._drop_input_cols:
452
456
  return []
@@ -634,11 +638,6 @@ class XGBClassifier(BaseTransformer):
634
638
  subproject=_SUBPROJECT,
635
639
  custom_tags=dict([("autogen", True)]),
636
640
  )
637
- @telemetry.add_stmt_params_to_df(
638
- project=_PROJECT,
639
- subproject=_SUBPROJECT,
640
- custom_tags=dict([("autogen", True)]),
641
- )
642
641
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
643
642
  """Predict with `X`
644
643
  For more details on this function, see [xgboost.XGBClassifier.predict]
@@ -692,11 +691,6 @@ class XGBClassifier(BaseTransformer):
692
691
  subproject=_SUBPROJECT,
693
692
  custom_tags=dict([("autogen", True)]),
694
693
  )
695
- @telemetry.add_stmt_params_to_df(
696
- project=_PROJECT,
697
- subproject=_SUBPROJECT,
698
- custom_tags=dict([("autogen", True)]),
699
- )
700
694
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
701
695
  """Method not supported for this class.
702
696
 
@@ -753,7 +747,8 @@ class XGBClassifier(BaseTransformer):
753
747
  if False:
754
748
  self.fit(dataset)
755
749
  assert self._sklearn_object is not None
756
- return self._sklearn_object.labels_
750
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
751
+ return labels
757
752
  else:
758
753
  raise NotImplementedError
759
754
 
@@ -789,6 +784,7 @@ class XGBClassifier(BaseTransformer):
789
784
  output_cols = []
790
785
 
791
786
  # Make sure column names are valid snowflake identifiers.
787
+ assert output_cols is not None # Make MyPy happy
792
788
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
793
789
 
794
790
  return rv
@@ -799,11 +795,6 @@ class XGBClassifier(BaseTransformer):
799
795
  subproject=_SUBPROJECT,
800
796
  custom_tags=dict([("autogen", True)]),
801
797
  )
802
- @telemetry.add_stmt_params_to_df(
803
- project=_PROJECT,
804
- subproject=_SUBPROJECT,
805
- custom_tags=dict([("autogen", True)]),
806
- )
807
798
  def predict_proba(
808
799
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
809
800
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -846,11 +837,6 @@ class XGBClassifier(BaseTransformer):
846
837
  subproject=_SUBPROJECT,
847
838
  custom_tags=dict([("autogen", True)]),
848
839
  )
849
- @telemetry.add_stmt_params_to_df(
850
- project=_PROJECT,
851
- subproject=_SUBPROJECT,
852
- custom_tags=dict([("autogen", True)]),
853
- )
854
840
  def predict_log_proba(
855
841
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
856
842
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -889,16 +875,6 @@ class XGBClassifier(BaseTransformer):
889
875
  return output_df
890
876
 
891
877
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
892
- @telemetry.send_api_usage_telemetry(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
- @telemetry.add_stmt_params_to_df(
898
- project=_PROJECT,
899
- subproject=_SUBPROJECT,
900
- custom_tags=dict([("autogen", True)]),
901
- )
902
878
  def decision_function(
903
879
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
904
880
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -999,11 +975,6 @@ class XGBClassifier(BaseTransformer):
999
975
  subproject=_SUBPROJECT,
1000
976
  custom_tags=dict([("autogen", True)]),
1001
977
  )
1002
- @telemetry.add_stmt_params_to_df(
1003
- project=_PROJECT,
1004
- subproject=_SUBPROJECT,
1005
- custom_tags=dict([("autogen", True)]),
1006
- )
1007
978
  def kneighbors(
1008
979
  self,
1009
980
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1063,9 +1034,9 @@ class XGBClassifier(BaseTransformer):
1063
1034
  # For classifier, the type of predict is the same as the type of label
1064
1035
  if self._sklearn_object._estimator_type == 'classifier':
1065
1036
  # label columns is the desired type for output
1066
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1037
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1067
1038
  # rename the output columns
1068
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1039
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1069
1040
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1070
1041
  ([] if self._drop_input_cols else inputs)
1071
1042
  + outputs)