snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRFRegressor(BaseTransformer):
|
56
57
|
r"""scikit-learn API for XGBoost random forest regression
|
57
58
|
For more details on this class, see [xgboost.XGBRFRegressor]
|
@@ -60,7 +61,51 @@ class XGBRFRegressor(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of trees in random forest to fit.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,42 +312,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
275
|
-
parameters are considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
298
|
-
A string or a list of strings indicating column names to be excluded from any
|
299
|
-
operations (such as train, transform, or inference). These specified column(s)
|
300
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
301
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
302
|
-
columns, like index columns, during training or inference.
|
303
|
-
|
304
|
-
drop_input_cols: Optional[bool], default=False
|
305
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
306
315
|
"""
|
307
316
|
|
308
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -328,7 +337,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
328
337
|
self.set_passthrough_cols(passthrough_cols)
|
329
338
|
self.set_drop_input_cols(drop_input_cols)
|
330
339
|
self.set_sample_weight_col(sample_weight_col)
|
331
|
-
deps = set(
|
340
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
332
341
|
|
333
342
|
self._deps = list(deps)
|
334
343
|
|
@@ -340,14 +349,15 @@ class XGBRFRegressor(BaseTransformer):
|
|
340
349
|
args=init_args,
|
341
350
|
klass=xgboost.XGBRFRegressor
|
342
351
|
)
|
343
|
-
self._sklearn_object = xgboost.XGBRFRegressor(
|
352
|
+
self._sklearn_object: Any = xgboost.XGBRFRegressor(
|
344
353
|
**cleaned_up_init_args,
|
345
354
|
**kwargs,
|
346
355
|
)
|
347
356
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
348
357
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
349
358
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
350
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
359
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
360
|
+
self._autogenerated = True
|
351
361
|
|
352
362
|
def _get_rand_id(self) -> str:
|
353
363
|
"""
|
@@ -403,54 +413,48 @@ class XGBRFRegressor(BaseTransformer):
|
|
403
413
|
self
|
404
414
|
"""
|
405
415
|
self._infer_input_output_cols(dataset)
|
406
|
-
if isinstance(dataset,
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
self.
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
416
|
+
if isinstance(dataset, DataFrame):
|
417
|
+
session = dataset._session
|
418
|
+
assert session is not None # keep mypy happy
|
419
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
420
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
421
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
422
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
423
|
+
|
424
|
+
# Specify input columns so column pruning will be enforced
|
425
|
+
selected_cols = self._get_active_columns()
|
426
|
+
if len(selected_cols) > 0:
|
427
|
+
dataset = dataset.select(selected_cols)
|
428
|
+
|
429
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
430
|
+
|
431
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
432
|
+
if SNOWML_SPROC_ENV in os.environ:
|
433
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
434
|
+
project=_PROJECT,
|
435
|
+
subproject=_SUBPROJECT,
|
436
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFRegressor.__class__.__name__),
|
437
|
+
api_calls=[Session.call],
|
438
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
439
|
+
)
|
440
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
441
|
+
pd_df.columns = dataset.columns
|
442
|
+
dataset = pd_df
|
443
|
+
|
444
|
+
model_trainer = ModelTrainerBuilder.build(
|
445
|
+
estimator=self._sklearn_object,
|
446
|
+
dataset=dataset,
|
447
|
+
input_cols=self.input_cols,
|
448
|
+
label_cols=self.label_cols,
|
449
|
+
sample_weight_col=self.sample_weight_col,
|
450
|
+
autogenerated=self._autogenerated,
|
451
|
+
subproject=_SUBPROJECT
|
452
|
+
)
|
453
|
+
self._sklearn_object = model_trainer.train()
|
422
454
|
self._is_fitted = True
|
423
455
|
self._get_model_signatures(dataset)
|
424
456
|
return self
|
425
457
|
|
426
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
427
|
-
session = dataset._session
|
428
|
-
assert session is not None # keep mypy happy
|
429
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
430
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
431
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
432
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
433
|
-
|
434
|
-
# Specify input columns so column pruning will be enforced
|
435
|
-
selected_cols = self._get_active_columns()
|
436
|
-
if len(selected_cols) > 0:
|
437
|
-
dataset = dataset.select(selected_cols)
|
438
|
-
|
439
|
-
estimator = self._sklearn_object
|
440
|
-
assert estimator is not None # Keep mypy happy
|
441
|
-
|
442
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
443
|
-
|
444
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
445
|
-
dataset,
|
446
|
-
session,
|
447
|
-
estimator,
|
448
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
449
|
-
self.input_cols,
|
450
|
-
self.label_cols,
|
451
|
-
self.sample_weight_col,
|
452
|
-
)
|
453
|
-
|
454
458
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
455
459
|
if self._drop_input_cols:
|
456
460
|
return []
|
@@ -638,11 +642,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
638
642
|
subproject=_SUBPROJECT,
|
639
643
|
custom_tags=dict([("autogen", True)]),
|
640
644
|
)
|
641
|
-
@telemetry.add_stmt_params_to_df(
|
642
|
-
project=_PROJECT,
|
643
|
-
subproject=_SUBPROJECT,
|
644
|
-
custom_tags=dict([("autogen", True)]),
|
645
|
-
)
|
646
645
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
647
646
|
"""Predict with `X`
|
648
647
|
For more details on this function, see [xgboost.XGBRFRegressor.predict]
|
@@ -696,11 +695,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
696
695
|
subproject=_SUBPROJECT,
|
697
696
|
custom_tags=dict([("autogen", True)]),
|
698
697
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
698
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
705
699
|
"""Method not supported for this class.
|
706
700
|
|
@@ -757,7 +751,8 @@ class XGBRFRegressor(BaseTransformer):
|
|
757
751
|
if False:
|
758
752
|
self.fit(dataset)
|
759
753
|
assert self._sklearn_object is not None
|
760
|
-
|
754
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
755
|
+
return labels
|
761
756
|
else:
|
762
757
|
raise NotImplementedError
|
763
758
|
|
@@ -793,6 +788,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
793
788
|
output_cols = []
|
794
789
|
|
795
790
|
# Make sure column names are valid snowflake identifiers.
|
791
|
+
assert output_cols is not None # Make MyPy happy
|
796
792
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
797
793
|
|
798
794
|
return rv
|
@@ -803,11 +799,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
803
799
|
subproject=_SUBPROJECT,
|
804
800
|
custom_tags=dict([("autogen", True)]),
|
805
801
|
)
|
806
|
-
@telemetry.add_stmt_params_to_df(
|
807
|
-
project=_PROJECT,
|
808
|
-
subproject=_SUBPROJECT,
|
809
|
-
custom_tags=dict([("autogen", True)]),
|
810
|
-
)
|
811
802
|
def predict_proba(
|
812
803
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
813
804
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -848,11 +839,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
848
839
|
subproject=_SUBPROJECT,
|
849
840
|
custom_tags=dict([("autogen", True)]),
|
850
841
|
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
842
|
def predict_log_proba(
|
857
843
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
858
844
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,16 +875,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
889
875
|
return output_df
|
890
876
|
|
891
877
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
892
|
-
@telemetry.send_api_usage_telemetry(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
|
-
@telemetry.add_stmt_params_to_df(
|
898
|
-
project=_PROJECT,
|
899
|
-
subproject=_SUBPROJECT,
|
900
|
-
custom_tags=dict([("autogen", True)]),
|
901
|
-
)
|
902
878
|
def decision_function(
|
903
879
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
904
880
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -999,11 +975,6 @@ class XGBRFRegressor(BaseTransformer):
|
|
999
975
|
subproject=_SUBPROJECT,
|
1000
976
|
custom_tags=dict([("autogen", True)]),
|
1001
977
|
)
|
1002
|
-
@telemetry.add_stmt_params_to_df(
|
1003
|
-
project=_PROJECT,
|
1004
|
-
subproject=_SUBPROJECT,
|
1005
|
-
custom_tags=dict([("autogen", True)]),
|
1006
|
-
)
|
1007
978
|
def kneighbors(
|
1008
979
|
self,
|
1009
980
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1063,9 +1034,9 @@ class XGBRFRegressor(BaseTransformer):
|
|
1063
1034
|
# For classifier, the type of predict is the same as the type of label
|
1064
1035
|
if self._sklearn_object._estimator_type == 'classifier':
|
1065
1036
|
# label columns is the desired type for output
|
1066
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1037
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1067
1038
|
# rename the output columns
|
1068
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1039
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1069
1040
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1070
1041
|
([] if self._drop_input_cols else inputs)
|
1071
1042
|
+ outputs)
|
@@ -24,6 +24,7 @@ from snowflake.ml._internal.utils import (
|
|
24
24
|
formatting,
|
25
25
|
identifier,
|
26
26
|
query_result_checker,
|
27
|
+
spcs_attribution_utils,
|
27
28
|
table_manager,
|
28
29
|
uri,
|
29
30
|
)
|
@@ -1767,6 +1768,7 @@ class ModelRegistry:
|
|
1767
1768
|
service_name = identifier.get_schema_level_object_identifier(
|
1768
1769
|
self._name, self._schema, f"service_{deployment['MODEL_ID']}"
|
1769
1770
|
)
|
1771
|
+
spcs_attribution_utils.record_service_end(self._session, service_name)
|
1770
1772
|
query_result_checker.SqlResultValidator(
|
1771
1773
|
self._session,
|
1772
1774
|
f"DROP SERVICE IF EXISTS {service_name}",
|
@@ -0,0 +1,215 @@
|
|
1
|
+
from types import ModuleType
|
2
|
+
from typing import Dict, List, Optional
|
3
|
+
|
4
|
+
from snowflake.ml._internal import telemetry
|
5
|
+
from snowflake.ml._internal.utils import sql_identifier
|
6
|
+
from snowflake.ml.model import model_signature, type_hints as model_types
|
7
|
+
from snowflake.ml.model._client.model import model_impl, model_version_impl
|
8
|
+
from snowflake.ml.model._client.ops import model_ops
|
9
|
+
from snowflake.ml.model._model_composer import model_composer
|
10
|
+
from snowflake.snowpark import session
|
11
|
+
|
12
|
+
_TELEMETRY_PROJECT = "MLOps"
|
13
|
+
_MODEL_TELEMETRY_SUBPROJECT = "ModelManagement"
|
14
|
+
|
15
|
+
|
16
|
+
class Registry:
|
17
|
+
def __init__(
|
18
|
+
self,
|
19
|
+
session: session.Session,
|
20
|
+
*,
|
21
|
+
database_name: Optional[str] = None,
|
22
|
+
schema_name: Optional[str] = None,
|
23
|
+
) -> None:
|
24
|
+
if database_name:
|
25
|
+
self._database_name = sql_identifier.SqlIdentifier(database_name)
|
26
|
+
else:
|
27
|
+
session_db = session.get_current_database()
|
28
|
+
if session_db:
|
29
|
+
self._database_name = sql_identifier.SqlIdentifier(session_db)
|
30
|
+
else:
|
31
|
+
raise ValueError("You need to provide a database to use registry.")
|
32
|
+
|
33
|
+
if schema_name:
|
34
|
+
self._schema_name = sql_identifier.SqlIdentifier(schema_name)
|
35
|
+
elif database_name:
|
36
|
+
self._schema_name = sql_identifier.SqlIdentifier("PUBLIC")
|
37
|
+
else:
|
38
|
+
session_schema = session.get_current_schema()
|
39
|
+
self._schema_name = (
|
40
|
+
sql_identifier.SqlIdentifier(session_schema)
|
41
|
+
if session_schema
|
42
|
+
else sql_identifier.SqlIdentifier("PUBLIC")
|
43
|
+
)
|
44
|
+
|
45
|
+
self._model_ops = model_ops.ModelOperator(
|
46
|
+
session, database_name=self._database_name, schema_name=self._schema_name
|
47
|
+
)
|
48
|
+
|
49
|
+
@property
|
50
|
+
def location(self) -> str:
|
51
|
+
return ".".join([self._database_name.identifier(), self._schema_name.identifier()])
|
52
|
+
|
53
|
+
@telemetry.send_api_usage_telemetry(
|
54
|
+
project=_TELEMETRY_PROJECT,
|
55
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
56
|
+
)
|
57
|
+
def log_model(
|
58
|
+
self,
|
59
|
+
model: model_types.SupportedModelType,
|
60
|
+
*,
|
61
|
+
model_name: str,
|
62
|
+
version_name: str,
|
63
|
+
conda_dependencies: Optional[List[str]] = None,
|
64
|
+
pip_requirements: Optional[List[str]] = None,
|
65
|
+
python_version: Optional[str] = None,
|
66
|
+
signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
|
67
|
+
sample_input_data: Optional[model_types.SupportedDataType] = None,
|
68
|
+
code_paths: Optional[List[str]] = None,
|
69
|
+
ext_modules: Optional[List[ModuleType]] = None,
|
70
|
+
options: Optional[model_types.ModelSaveOption] = None,
|
71
|
+
) -> model_version_impl.ModelVersion:
|
72
|
+
"""Log a model.
|
73
|
+
|
74
|
+
Args:
|
75
|
+
model: Model Python object
|
76
|
+
model_name: A string as name.
|
77
|
+
version_name: A string as version. model_name and version_name combination must be unique.
|
78
|
+
signatures: Model data signatures for inputs and output for every target methods. If it is None,
|
79
|
+
sample_input_data would be used to infer the signatures for those models that cannot automatically
|
80
|
+
infer the signature. If not None, sample_input should not be specified. Defaults to None.
|
81
|
+
sample_input_data: Sample input data to infer the model signatures from. If it is None, signatures must be
|
82
|
+
specified if the model cannot automatically infer the signature. If not None, signatures should not be
|
83
|
+
specified. Defaults to None.
|
84
|
+
conda_dependencies: List of Conda package specs. Use "[channel::]package [operator version]" syntax to
|
85
|
+
specify a dependency. It is a recommended way to specify your dependencies using conda. When channel is
|
86
|
+
not specified, Snowflake Anaconda Channel will be used.
|
87
|
+
pip_requirements: List of Pip package specs.
|
88
|
+
python_version: A string of python version where model is run. Used for user override. If specified as None,
|
89
|
+
current version would be captured. Defaults to None.
|
90
|
+
code_paths: Directory of code to import.
|
91
|
+
ext_modules: External modules that user might want to get pickled with model object. Defaults to None.
|
92
|
+
options: Model specific kwargs.
|
93
|
+
|
94
|
+
Returns:
|
95
|
+
A ModelVersion object corresponding to the model just get logged.
|
96
|
+
"""
|
97
|
+
|
98
|
+
statement_params = telemetry.get_statement_params(
|
99
|
+
project=_TELEMETRY_PROJECT,
|
100
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
101
|
+
)
|
102
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
103
|
+
|
104
|
+
version_name_id = sql_identifier.SqlIdentifier(version_name)
|
105
|
+
|
106
|
+
stage_path = self._model_ops.prepare_model_stage_path(
|
107
|
+
statement_params=statement_params,
|
108
|
+
)
|
109
|
+
|
110
|
+
mc = model_composer.ModelComposer(self._model_ops._session, stage_path=stage_path)
|
111
|
+
mc.save(
|
112
|
+
name=model_name_id.resolved(),
|
113
|
+
model=model,
|
114
|
+
signatures=signatures,
|
115
|
+
sample_input=sample_input_data,
|
116
|
+
conda_dependencies=conda_dependencies,
|
117
|
+
pip_requirements=pip_requirements,
|
118
|
+
python_version=python_version,
|
119
|
+
code_paths=code_paths,
|
120
|
+
ext_modules=ext_modules,
|
121
|
+
options=options,
|
122
|
+
)
|
123
|
+
self._model_ops.create_from_stage(
|
124
|
+
composed_model=mc,
|
125
|
+
model_name=model_name_id,
|
126
|
+
version_name=version_name_id,
|
127
|
+
statement_params=statement_params,
|
128
|
+
)
|
129
|
+
|
130
|
+
return model_version_impl.ModelVersion._ref(
|
131
|
+
self._model_ops,
|
132
|
+
model_name=model_name_id,
|
133
|
+
version_name=version_name_id,
|
134
|
+
)
|
135
|
+
|
136
|
+
@telemetry.send_api_usage_telemetry(
|
137
|
+
project=_TELEMETRY_PROJECT,
|
138
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
139
|
+
)
|
140
|
+
def get_model(self, model_name: str) -> model_impl.Model:
|
141
|
+
"""Get the model object.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
model_name: The model name.
|
145
|
+
|
146
|
+
Raises:
|
147
|
+
ValueError: Raised when the model requested does not exist.
|
148
|
+
|
149
|
+
Returns:
|
150
|
+
The model object.
|
151
|
+
"""
|
152
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
153
|
+
|
154
|
+
statement_params = telemetry.get_statement_params(
|
155
|
+
project=_TELEMETRY_PROJECT,
|
156
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
157
|
+
)
|
158
|
+
if self._model_ops.validate_existence(
|
159
|
+
model_name=model_name_id,
|
160
|
+
statement_params=statement_params,
|
161
|
+
):
|
162
|
+
return model_impl.Model._ref(
|
163
|
+
self._model_ops,
|
164
|
+
model_name=model_name_id,
|
165
|
+
)
|
166
|
+
else:
|
167
|
+
raise ValueError(f"Unable to find model {model_name}")
|
168
|
+
|
169
|
+
@telemetry.send_api_usage_telemetry(
|
170
|
+
project=_TELEMETRY_PROJECT,
|
171
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
172
|
+
)
|
173
|
+
def list_models(self) -> List[model_impl.Model]:
|
174
|
+
"""List all models in the schema where the registry is opened.
|
175
|
+
|
176
|
+
Returns:
|
177
|
+
A List of Model= object representing all models in the schema where the registry is opened.
|
178
|
+
"""
|
179
|
+
statement_params = telemetry.get_statement_params(
|
180
|
+
project=_TELEMETRY_PROJECT,
|
181
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
182
|
+
)
|
183
|
+
model_names = self._model_ops.list_models_or_versions(
|
184
|
+
statement_params=statement_params,
|
185
|
+
)
|
186
|
+
return [
|
187
|
+
model_impl.Model._ref(
|
188
|
+
self._model_ops,
|
189
|
+
model_name=model_name,
|
190
|
+
)
|
191
|
+
for model_name in model_names
|
192
|
+
]
|
193
|
+
|
194
|
+
@telemetry.send_api_usage_telemetry(
|
195
|
+
project=_TELEMETRY_PROJECT,
|
196
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
197
|
+
)
|
198
|
+
def delete_model(self, model_name: str) -> None:
|
199
|
+
"""Delete the model.
|
200
|
+
|
201
|
+
Args:
|
202
|
+
model_name: The model name, can be fully qualified one.
|
203
|
+
If not, use database name and schema name of the registry.
|
204
|
+
"""
|
205
|
+
model_name_id = sql_identifier.SqlIdentifier(model_name)
|
206
|
+
|
207
|
+
statement_params = telemetry.get_statement_params(
|
208
|
+
project=_TELEMETRY_PROJECT,
|
209
|
+
subproject=_MODEL_TELEMETRY_SUBPROJECT,
|
210
|
+
)
|
211
|
+
|
212
|
+
self._model_ops.delete_model_or_version(
|
213
|
+
model_name=model_name_id,
|
214
|
+
statement_params=statement_params,
|
215
|
+
)
|
snowflake/ml/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION="1.1.
|
1
|
+
VERSION="1.1.2"
|
@@ -38,8 +38,10 @@ Requires-Dist: importlib_resources>=5.1.4, <6
|
|
38
38
|
Requires-Dist: numpy>=1.23,<2
|
39
39
|
Requires-Dist: packaging>=20.9,<24
|
40
40
|
Requires-Dist: pandas>=1.0.0,<2
|
41
|
+
Requires-Dist: pyarrow
|
41
42
|
Requires-Dist: pytimeparse>=1.1.8,<2
|
42
43
|
Requires-Dist: pyyaml>=6.0,<7
|
44
|
+
Requires-Dist: retrying>=1.3.3,<2
|
43
45
|
Requires-Dist: s3fs>=2022.11,<2024
|
44
46
|
Requires-Dist: scikit-learn>=1.2.1,<1.4
|
45
47
|
Requires-Dist: scipy>=1.9,<2
|
@@ -74,7 +76,7 @@ Provides-Extra: transformers
|
|
74
76
|
Requires-Dist: sentencepiece>=0.1.95,<0.2; extra == 'transformers'
|
75
77
|
Requires-Dist: tokenizers>=0.10,<1; extra == 'transformers'
|
76
78
|
Requires-Dist: transformers>=4.32.1,<5; extra == 'transformers'
|
77
|
-
Version: 1.1.
|
79
|
+
Version: 1.1.2
|
78
80
|
|
79
81
|
# Snowpark ML
|
80
82
|
|
@@ -163,6 +165,24 @@ Note that until a `snowflake-ml-python` package version is available in the offi
|
|
163
165
|
be compatibility issues. Server-side functionality that `snowflake-ml-python` depends on may not yet be released.
|
164
166
|
# Release History
|
165
167
|
|
168
|
+
## 1.1.2
|
169
|
+
|
170
|
+
### Bug Fixes
|
171
|
+
|
172
|
+
- Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
|
173
|
+
- Model Development: Execute model signature inference without materializing full dataframe in memory.
|
174
|
+
- Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
|
175
|
+
|
176
|
+
### Behavior Changes
|
177
|
+
|
178
|
+
- Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
|
179
|
+
- Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
|
180
|
+
ignored since they are not necessary.
|
181
|
+
|
182
|
+
### New Features
|
183
|
+
|
184
|
+
- Model Development: SQL implementation of binary `precision_score` metric.
|
185
|
+
|
166
186
|
## 1.1.1
|
167
187
|
|
168
188
|
### Bug Fixes
|
@@ -170,8 +190,6 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
|
|
170
190
|
- Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
|
171
191
|
- Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
|
172
192
|
|
173
|
-
### Behavior Changes
|
174
|
-
|
175
193
|
### New Features
|
176
194
|
|
177
195
|
- Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
|