snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class FastICA(BaseTransformer):
|
57
58
|
r"""FastICA: a fast algorithm for Independent Component Analysis
|
58
59
|
For more details on this class, see [sklearn.decomposition.FastICA]
|
@@ -60,6 +61,49 @@ class FastICA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of components to use. If None is passed, all are used.
|
65
109
|
|
@@ -119,42 +163,6 @@ class FastICA(BaseTransformer):
|
|
119
163
|
normal distribution. Pass an int, for reproducible results
|
120
164
|
across multiple function calls.
|
121
165
|
See :term:`Glossary <random_state>`.
|
122
|
-
|
123
|
-
input_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that contain features.
|
125
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
126
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
127
|
-
parameters are considered input columns.
|
128
|
-
|
129
|
-
label_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that contain labels.
|
131
|
-
This is a required param for estimators, as there is no way to infer these
|
132
|
-
columns. If this parameter is not specified, then object is fitted without
|
133
|
-
labels (like a transformer).
|
134
|
-
|
135
|
-
output_cols: Optional[Union[str, List[str]]]
|
136
|
-
A string or list of strings representing column names that will store the
|
137
|
-
output of predict and transform operations. The length of output_cols must
|
138
|
-
match the expected number of output columns from the specific estimator or
|
139
|
-
transformer class used.
|
140
|
-
If this parameter is not specified, output column names are derived by
|
141
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
142
|
-
column names work for estimator's predict() method, but output_cols must
|
143
|
-
be set explicitly for transformers.
|
144
|
-
|
145
|
-
sample_weight_col: Optional[str]
|
146
|
-
A string representing the column name containing the sample weights.
|
147
|
-
This argument is only required when working with weighted datasets.
|
148
|
-
|
149
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
150
|
-
A string or a list of strings indicating column names to be excluded from any
|
151
|
-
operations (such as train, transform, or inference). These specified column(s)
|
152
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
153
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
154
|
-
columns, like index columns, during training or inference.
|
155
|
-
|
156
|
-
drop_input_cols: Optional[bool], default=False
|
157
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
158
166
|
"""
|
159
167
|
|
160
168
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -185,7 +193,7 @@ class FastICA(BaseTransformer):
|
|
185
193
|
self.set_passthrough_cols(passthrough_cols)
|
186
194
|
self.set_drop_input_cols(drop_input_cols)
|
187
195
|
self.set_sample_weight_col(sample_weight_col)
|
188
|
-
deps = set(
|
196
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
189
197
|
|
190
198
|
self._deps = list(deps)
|
191
199
|
|
@@ -203,13 +211,14 @@ class FastICA(BaseTransformer):
|
|
203
211
|
args=init_args,
|
204
212
|
klass=sklearn.decomposition.FastICA
|
205
213
|
)
|
206
|
-
self._sklearn_object = sklearn.decomposition.FastICA(
|
214
|
+
self._sklearn_object: Any = sklearn.decomposition.FastICA(
|
207
215
|
**cleaned_up_init_args,
|
208
216
|
)
|
209
217
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
210
218
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
211
219
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
212
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FastICA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
220
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FastICA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
221
|
+
self._autogenerated = True
|
213
222
|
|
214
223
|
def _get_rand_id(self) -> str:
|
215
224
|
"""
|
@@ -265,54 +274,48 @@ class FastICA(BaseTransformer):
|
|
265
274
|
self
|
266
275
|
"""
|
267
276
|
self._infer_input_output_cols(dataset)
|
268
|
-
if isinstance(dataset,
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
self.
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
277
|
+
if isinstance(dataset, DataFrame):
|
278
|
+
session = dataset._session
|
279
|
+
assert session is not None # keep mypy happy
|
280
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
281
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
282
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
283
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
284
|
+
|
285
|
+
# Specify input columns so column pruning will be enforced
|
286
|
+
selected_cols = self._get_active_columns()
|
287
|
+
if len(selected_cols) > 0:
|
288
|
+
dataset = dataset.select(selected_cols)
|
289
|
+
|
290
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
|
+
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
293
|
+
if SNOWML_SPROC_ENV in os.environ:
|
294
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
295
|
+
project=_PROJECT,
|
296
|
+
subproject=_SUBPROJECT,
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FastICA.__class__.__name__),
|
298
|
+
api_calls=[Session.call],
|
299
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
300
|
+
)
|
301
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
302
|
+
pd_df.columns = dataset.columns
|
303
|
+
dataset = pd_df
|
304
|
+
|
305
|
+
model_trainer = ModelTrainerBuilder.build(
|
306
|
+
estimator=self._sklearn_object,
|
307
|
+
dataset=dataset,
|
308
|
+
input_cols=self.input_cols,
|
309
|
+
label_cols=self.label_cols,
|
310
|
+
sample_weight_col=self.sample_weight_col,
|
311
|
+
autogenerated=self._autogenerated,
|
312
|
+
subproject=_SUBPROJECT
|
313
|
+
)
|
314
|
+
self._sklearn_object = model_trainer.train()
|
284
315
|
self._is_fitted = True
|
285
316
|
self._get_model_signatures(dataset)
|
286
317
|
return self
|
287
318
|
|
288
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
289
|
-
session = dataset._session
|
290
|
-
assert session is not None # keep mypy happy
|
291
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
292
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
293
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
294
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
295
|
-
|
296
|
-
# Specify input columns so column pruning will be enforced
|
297
|
-
selected_cols = self._get_active_columns()
|
298
|
-
if len(selected_cols) > 0:
|
299
|
-
dataset = dataset.select(selected_cols)
|
300
|
-
|
301
|
-
estimator = self._sklearn_object
|
302
|
-
assert estimator is not None # Keep mypy happy
|
303
|
-
|
304
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
305
|
-
|
306
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
307
|
-
dataset,
|
308
|
-
session,
|
309
|
-
estimator,
|
310
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
311
|
-
self.input_cols,
|
312
|
-
self.label_cols,
|
313
|
-
self.sample_weight_col,
|
314
|
-
)
|
315
|
-
|
316
319
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
317
320
|
if self._drop_input_cols:
|
318
321
|
return []
|
@@ -500,11 +503,6 @@ class FastICA(BaseTransformer):
|
|
500
503
|
subproject=_SUBPROJECT,
|
501
504
|
custom_tags=dict([("autogen", True)]),
|
502
505
|
)
|
503
|
-
@telemetry.add_stmt_params_to_df(
|
504
|
-
project=_PROJECT,
|
505
|
-
subproject=_SUBPROJECT,
|
506
|
-
custom_tags=dict([("autogen", True)]),
|
507
|
-
)
|
508
506
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
509
507
|
"""Method not supported for this class.
|
510
508
|
|
@@ -556,11 +554,6 @@ class FastICA(BaseTransformer):
|
|
556
554
|
subproject=_SUBPROJECT,
|
557
555
|
custom_tags=dict([("autogen", True)]),
|
558
556
|
)
|
559
|
-
@telemetry.add_stmt_params_to_df(
|
560
|
-
project=_PROJECT,
|
561
|
-
subproject=_SUBPROJECT,
|
562
|
-
custom_tags=dict([("autogen", True)]),
|
563
|
-
)
|
564
557
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
565
558
|
"""Recover the sources from X (apply the unmixing matrix)
|
566
559
|
For more details on this function, see [sklearn.decomposition.FastICA.transform]
|
@@ -619,7 +612,8 @@ class FastICA(BaseTransformer):
|
|
619
612
|
if False:
|
620
613
|
self.fit(dataset)
|
621
614
|
assert self._sklearn_object is not None
|
622
|
-
|
615
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
616
|
+
return labels
|
623
617
|
else:
|
624
618
|
raise NotImplementedError
|
625
619
|
|
@@ -655,6 +649,7 @@ class FastICA(BaseTransformer):
|
|
655
649
|
output_cols = []
|
656
650
|
|
657
651
|
# Make sure column names are valid snowflake identifiers.
|
652
|
+
assert output_cols is not None # Make MyPy happy
|
658
653
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
659
654
|
|
660
655
|
return rv
|
@@ -665,11 +660,6 @@ class FastICA(BaseTransformer):
|
|
665
660
|
subproject=_SUBPROJECT,
|
666
661
|
custom_tags=dict([("autogen", True)]),
|
667
662
|
)
|
668
|
-
@telemetry.add_stmt_params_to_df(
|
669
|
-
project=_PROJECT,
|
670
|
-
subproject=_SUBPROJECT,
|
671
|
-
custom_tags=dict([("autogen", True)]),
|
672
|
-
)
|
673
663
|
def predict_proba(
|
674
664
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
675
665
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -710,11 +700,6 @@ class FastICA(BaseTransformer):
|
|
710
700
|
subproject=_SUBPROJECT,
|
711
701
|
custom_tags=dict([("autogen", True)]),
|
712
702
|
)
|
713
|
-
@telemetry.add_stmt_params_to_df(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
703
|
def predict_log_proba(
|
719
704
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
720
705
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -751,16 +736,6 @@ class FastICA(BaseTransformer):
|
|
751
736
|
return output_df
|
752
737
|
|
753
738
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
754
|
-
@telemetry.send_api_usage_telemetry(
|
755
|
-
project=_PROJECT,
|
756
|
-
subproject=_SUBPROJECT,
|
757
|
-
custom_tags=dict([("autogen", True)]),
|
758
|
-
)
|
759
|
-
@telemetry.add_stmt_params_to_df(
|
760
|
-
project=_PROJECT,
|
761
|
-
subproject=_SUBPROJECT,
|
762
|
-
custom_tags=dict([("autogen", True)]),
|
763
|
-
)
|
764
739
|
def decision_function(
|
765
740
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
766
741
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -859,11 +834,6 @@ class FastICA(BaseTransformer):
|
|
859
834
|
subproject=_SUBPROJECT,
|
860
835
|
custom_tags=dict([("autogen", True)]),
|
861
836
|
)
|
862
|
-
@telemetry.add_stmt_params_to_df(
|
863
|
-
project=_PROJECT,
|
864
|
-
subproject=_SUBPROJECT,
|
865
|
-
custom_tags=dict([("autogen", True)]),
|
866
|
-
)
|
867
837
|
def kneighbors(
|
868
838
|
self,
|
869
839
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -923,9 +893,9 @@ class FastICA(BaseTransformer):
|
|
923
893
|
# For classifier, the type of predict is the same as the type of label
|
924
894
|
if self._sklearn_object._estimator_type == 'classifier':
|
925
895
|
# label columns is the desired type for output
|
926
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
896
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
927
897
|
# rename the output columns
|
928
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
898
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
929
899
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
930
900
|
([] if self._drop_input_cols else inputs)
|
931
901
|
+ outputs)
|