snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RadiusNeighborsClassifier(BaseTransformer):
57
58
  r"""Classifier implementing a vote among neighbors within a given radius
58
59
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
@@ -60,6 +61,51 @@ class RadiusNeighborsClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  radius: float, default=1.0
64
110
  Range of parameter space to use by default for :meth:`radius_neighbors`
65
111
  queries.
@@ -135,42 +181,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
135
181
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
136
182
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
137
183
  for more details.
138
-
139
- input_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that contain features.
141
- If this parameter is not specified, all columns in the input DataFrame except
142
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
143
- parameters are considered input columns.
144
-
145
- label_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that contain labels.
147
- This is a required param for estimators, as there is no way to infer these
148
- columns. If this parameter is not specified, then object is fitted without
149
- labels (like a transformer).
150
-
151
- output_cols: Optional[Union[str, List[str]]]
152
- A string or list of strings representing column names that will store the
153
- output of predict and transform operations. The length of output_cols must
154
- match the expected number of output columns from the specific estimator or
155
- transformer class used.
156
- If this parameter is not specified, output column names are derived by
157
- adding an OUTPUT_ prefix to the label column names. These inferred output
158
- column names work for estimator's predict() method, but output_cols must
159
- be set explicitly for transformers.
160
-
161
- sample_weight_col: Optional[str]
162
- A string representing the column name containing the sample weights.
163
- This argument is only required when working with weighted datasets.
164
-
165
- passthrough_cols: Optional[Union[str, List[str]]]
166
- A string or a list of strings indicating column names to be excluded from any
167
- operations (such as train, transform, or inference). These specified column(s)
168
- will remain untouched throughout the process. This option is helpful in scenarios
169
- requiring automatic input_cols inference, but need to avoid using specific
170
- columns, like index columns, during training or inference.
171
-
172
- drop_input_cols: Optional[bool], default=False
173
- If set, the response of predict(), transform() methods will not contain input columns.
174
184
  """
175
185
 
176
186
  def __init__( # type: ignore[no-untyped-def]
@@ -200,7 +210,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
200
210
  self.set_passthrough_cols(passthrough_cols)
201
211
  self.set_drop_input_cols(drop_input_cols)
202
212
  self.set_sample_weight_col(sample_weight_col)
203
- deps = set(SklearnWrapperProvider().dependencies)
213
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
204
214
 
205
215
  self._deps = list(deps)
206
216
 
@@ -217,13 +227,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
217
227
  args=init_args,
218
228
  klass=sklearn.neighbors.RadiusNeighborsClassifier
219
229
  )
220
- self._sklearn_object = sklearn.neighbors.RadiusNeighborsClassifier(
230
+ self._sklearn_object: Any = sklearn.neighbors.RadiusNeighborsClassifier(
221
231
  **cleaned_up_init_args,
222
232
  )
223
233
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
224
234
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
225
235
  self._snowpark_cols: Optional[List[str]] = self.input_cols
226
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
236
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
237
+ self._autogenerated = True
227
238
 
228
239
  def _get_rand_id(self) -> str:
229
240
  """
@@ -279,54 +290,48 @@ class RadiusNeighborsClassifier(BaseTransformer):
279
290
  self
280
291
  """
281
292
  self._infer_input_output_cols(dataset)
282
- if isinstance(dataset, pd.DataFrame):
283
- assert self._sklearn_object is not None # keep mypy happy
284
- self._sklearn_object = self._handlers.fit_pandas(
285
- dataset,
286
- self._sklearn_object,
287
- self.input_cols,
288
- self.label_cols,
289
- self.sample_weight_col
290
- )
291
- elif isinstance(dataset, DataFrame):
292
- self._fit_snowpark(dataset)
293
- else:
294
- raise TypeError(
295
- f"Unexpected dataset type: {type(dataset)}."
296
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
297
- )
293
+ if isinstance(dataset, DataFrame):
294
+ session = dataset._session
295
+ assert session is not None # keep mypy happy
296
+ # Validate that key package version in user workspace are supported in snowflake conda channel
297
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
298
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
299
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
300
+
301
+ # Specify input columns so column pruning will be enforced
302
+ selected_cols = self._get_active_columns()
303
+ if len(selected_cols) > 0:
304
+ dataset = dataset.select(selected_cols)
305
+
306
+ self._snowpark_cols = dataset.select(self.input_cols).columns
307
+
308
+ # If we are already in a stored procedure, no need to kick off another one.
309
+ if SNOWML_SPROC_ENV in os.environ:
310
+ statement_params = telemetry.get_function_usage_statement_params(
311
+ project=_PROJECT,
312
+ subproject=_SUBPROJECT,
313
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__),
314
+ api_calls=[Session.call],
315
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
316
+ )
317
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
318
+ pd_df.columns = dataset.columns
319
+ dataset = pd_df
320
+
321
+ model_trainer = ModelTrainerBuilder.build(
322
+ estimator=self._sklearn_object,
323
+ dataset=dataset,
324
+ input_cols=self.input_cols,
325
+ label_cols=self.label_cols,
326
+ sample_weight_col=self.sample_weight_col,
327
+ autogenerated=self._autogenerated,
328
+ subproject=_SUBPROJECT
329
+ )
330
+ self._sklearn_object = model_trainer.train()
298
331
  self._is_fitted = True
299
332
  self._get_model_signatures(dataset)
300
333
  return self
301
334
 
302
- def _fit_snowpark(self, dataset: DataFrame) -> None:
303
- session = dataset._session
304
- assert session is not None # keep mypy happy
305
- # Validate that key package version in user workspace are supported in snowflake conda channel
306
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
307
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
308
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
309
-
310
- # Specify input columns so column pruning will be enforced
311
- selected_cols = self._get_active_columns()
312
- if len(selected_cols) > 0:
313
- dataset = dataset.select(selected_cols)
314
-
315
- estimator = self._sklearn_object
316
- assert estimator is not None # Keep mypy happy
317
-
318
- self._snowpark_cols = dataset.select(self.input_cols).columns
319
-
320
- self._sklearn_object = self._handlers.fit_snowpark(
321
- dataset,
322
- session,
323
- estimator,
324
- ["snowflake-snowpark-python"] + self._get_dependencies(),
325
- self.input_cols,
326
- self.label_cols,
327
- self.sample_weight_col,
328
- )
329
-
330
335
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
331
336
  if self._drop_input_cols:
332
337
  return []
@@ -514,11 +519,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
514
519
  subproject=_SUBPROJECT,
515
520
  custom_tags=dict([("autogen", True)]),
516
521
  )
517
- @telemetry.add_stmt_params_to_df(
518
- project=_PROJECT,
519
- subproject=_SUBPROJECT,
520
- custom_tags=dict([("autogen", True)]),
521
- )
522
522
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
523
523
  """Predict the class labels for the provided data
524
524
  For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.predict]
@@ -572,11 +572,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
572
572
  subproject=_SUBPROJECT,
573
573
  custom_tags=dict([("autogen", True)]),
574
574
  )
575
- @telemetry.add_stmt_params_to_df(
576
- project=_PROJECT,
577
- subproject=_SUBPROJECT,
578
- custom_tags=dict([("autogen", True)]),
579
- )
580
575
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
581
576
  """Method not supported for this class.
582
577
 
@@ -633,7 +628,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
633
628
  if False:
634
629
  self.fit(dataset)
635
630
  assert self._sklearn_object is not None
636
- return self._sklearn_object.labels_
631
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
632
+ return labels
637
633
  else:
638
634
  raise NotImplementedError
639
635
 
@@ -669,6 +665,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
669
665
  output_cols = []
670
666
 
671
667
  # Make sure column names are valid snowflake identifiers.
668
+ assert output_cols is not None # Make MyPy happy
672
669
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
673
670
 
674
671
  return rv
@@ -679,11 +676,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
679
676
  subproject=_SUBPROJECT,
680
677
  custom_tags=dict([("autogen", True)]),
681
678
  )
682
- @telemetry.add_stmt_params_to_df(
683
- project=_PROJECT,
684
- subproject=_SUBPROJECT,
685
- custom_tags=dict([("autogen", True)]),
686
- )
687
679
  def predict_proba(
688
680
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
689
681
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -726,11 +718,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
726
718
  subproject=_SUBPROJECT,
727
719
  custom_tags=dict([("autogen", True)]),
728
720
  )
729
- @telemetry.add_stmt_params_to_df(
730
- project=_PROJECT,
731
- subproject=_SUBPROJECT,
732
- custom_tags=dict([("autogen", True)]),
733
- )
734
721
  def predict_log_proba(
735
722
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
736
723
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -769,16 +756,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
769
756
  return output_df
770
757
 
771
758
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
772
- @telemetry.send_api_usage_telemetry(
773
- project=_PROJECT,
774
- subproject=_SUBPROJECT,
775
- custom_tags=dict([("autogen", True)]),
776
- )
777
- @telemetry.add_stmt_params_to_df(
778
- project=_PROJECT,
779
- subproject=_SUBPROJECT,
780
- custom_tags=dict([("autogen", True)]),
781
- )
782
759
  def decision_function(
783
760
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
784
761
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -879,11 +856,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
879
856
  subproject=_SUBPROJECT,
880
857
  custom_tags=dict([("autogen", True)]),
881
858
  )
882
- @telemetry.add_stmt_params_to_df(
883
- project=_PROJECT,
884
- subproject=_SUBPROJECT,
885
- custom_tags=dict([("autogen", True)]),
886
- )
887
859
  def kneighbors(
888
860
  self,
889
861
  dataset: Union[DataFrame, pd.DataFrame],
@@ -943,9 +915,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
943
915
  # For classifier, the type of predict is the same as the type of label
944
916
  if self._sklearn_object._estimator_type == 'classifier':
945
917
  # label columns is the desired type for output
946
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
918
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
947
919
  # rename the output columns
948
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
920
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
949
921
  self._model_signature_dict["predict"] = ModelSignature(inputs,
950
922
  ([] if self._drop_input_cols else inputs)
951
923
  + outputs)