snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RadiusNeighborsClassifier(BaseTransformer):
|
57
58
|
r"""Classifier implementing a vote among neighbors within a given radius
|
58
59
|
For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
|
@@ -60,6 +61,51 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
radius: float, default=1.0
|
64
110
|
Range of parameter space to use by default for :meth:`radius_neighbors`
|
65
111
|
queries.
|
@@ -135,42 +181,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
135
181
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
136
182
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
137
183
|
for more details.
|
138
|
-
|
139
|
-
input_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that contain features.
|
141
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
142
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
143
|
-
parameters are considered input columns.
|
144
|
-
|
145
|
-
label_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that contain labels.
|
147
|
-
This is a required param for estimators, as there is no way to infer these
|
148
|
-
columns. If this parameter is not specified, then object is fitted without
|
149
|
-
labels (like a transformer).
|
150
|
-
|
151
|
-
output_cols: Optional[Union[str, List[str]]]
|
152
|
-
A string or list of strings representing column names that will store the
|
153
|
-
output of predict and transform operations. The length of output_cols must
|
154
|
-
match the expected number of output columns from the specific estimator or
|
155
|
-
transformer class used.
|
156
|
-
If this parameter is not specified, output column names are derived by
|
157
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
158
|
-
column names work for estimator's predict() method, but output_cols must
|
159
|
-
be set explicitly for transformers.
|
160
|
-
|
161
|
-
sample_weight_col: Optional[str]
|
162
|
-
A string representing the column name containing the sample weights.
|
163
|
-
This argument is only required when working with weighted datasets.
|
164
|
-
|
165
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or a list of strings indicating column names to be excluded from any
|
167
|
-
operations (such as train, transform, or inference). These specified column(s)
|
168
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
169
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
170
|
-
columns, like index columns, during training or inference.
|
171
|
-
|
172
|
-
drop_input_cols: Optional[bool], default=False
|
173
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
174
184
|
"""
|
175
185
|
|
176
186
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -200,7 +210,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
200
210
|
self.set_passthrough_cols(passthrough_cols)
|
201
211
|
self.set_drop_input_cols(drop_input_cols)
|
202
212
|
self.set_sample_weight_col(sample_weight_col)
|
203
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
204
214
|
|
205
215
|
self._deps = list(deps)
|
206
216
|
|
@@ -217,13 +227,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
217
227
|
args=init_args,
|
218
228
|
klass=sklearn.neighbors.RadiusNeighborsClassifier
|
219
229
|
)
|
220
|
-
self._sklearn_object = sklearn.neighbors.RadiusNeighborsClassifier(
|
230
|
+
self._sklearn_object: Any = sklearn.neighbors.RadiusNeighborsClassifier(
|
221
231
|
**cleaned_up_init_args,
|
222
232
|
)
|
223
233
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
224
234
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
225
235
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
226
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
236
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
237
|
+
self._autogenerated = True
|
227
238
|
|
228
239
|
def _get_rand_id(self) -> str:
|
229
240
|
"""
|
@@ -279,54 +290,48 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
279
290
|
self
|
280
291
|
"""
|
281
292
|
self._infer_input_output_cols(dataset)
|
282
|
-
if isinstance(dataset,
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
self.
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
293
|
+
if isinstance(dataset, DataFrame):
|
294
|
+
session = dataset._session
|
295
|
+
assert session is not None # keep mypy happy
|
296
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
297
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
298
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
299
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
300
|
+
|
301
|
+
# Specify input columns so column pruning will be enforced
|
302
|
+
selected_cols = self._get_active_columns()
|
303
|
+
if len(selected_cols) > 0:
|
304
|
+
dataset = dataset.select(selected_cols)
|
305
|
+
|
306
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
307
|
+
|
308
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
309
|
+
if SNOWML_SPROC_ENV in os.environ:
|
310
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
311
|
+
project=_PROJECT,
|
312
|
+
subproject=_SUBPROJECT,
|
313
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__),
|
314
|
+
api_calls=[Session.call],
|
315
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
316
|
+
)
|
317
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
318
|
+
pd_df.columns = dataset.columns
|
319
|
+
dataset = pd_df
|
320
|
+
|
321
|
+
model_trainer = ModelTrainerBuilder.build(
|
322
|
+
estimator=self._sklearn_object,
|
323
|
+
dataset=dataset,
|
324
|
+
input_cols=self.input_cols,
|
325
|
+
label_cols=self.label_cols,
|
326
|
+
sample_weight_col=self.sample_weight_col,
|
327
|
+
autogenerated=self._autogenerated,
|
328
|
+
subproject=_SUBPROJECT
|
329
|
+
)
|
330
|
+
self._sklearn_object = model_trainer.train()
|
298
331
|
self._is_fitted = True
|
299
332
|
self._get_model_signatures(dataset)
|
300
333
|
return self
|
301
334
|
|
302
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
303
|
-
session = dataset._session
|
304
|
-
assert session is not None # keep mypy happy
|
305
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
306
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
307
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
308
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
309
|
-
|
310
|
-
# Specify input columns so column pruning will be enforced
|
311
|
-
selected_cols = self._get_active_columns()
|
312
|
-
if len(selected_cols) > 0:
|
313
|
-
dataset = dataset.select(selected_cols)
|
314
|
-
|
315
|
-
estimator = self._sklearn_object
|
316
|
-
assert estimator is not None # Keep mypy happy
|
317
|
-
|
318
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
319
|
-
|
320
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
321
|
-
dataset,
|
322
|
-
session,
|
323
|
-
estimator,
|
324
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
325
|
-
self.input_cols,
|
326
|
-
self.label_cols,
|
327
|
-
self.sample_weight_col,
|
328
|
-
)
|
329
|
-
|
330
335
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
331
336
|
if self._drop_input_cols:
|
332
337
|
return []
|
@@ -514,11 +519,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
514
519
|
subproject=_SUBPROJECT,
|
515
520
|
custom_tags=dict([("autogen", True)]),
|
516
521
|
)
|
517
|
-
@telemetry.add_stmt_params_to_df(
|
518
|
-
project=_PROJECT,
|
519
|
-
subproject=_SUBPROJECT,
|
520
|
-
custom_tags=dict([("autogen", True)]),
|
521
|
-
)
|
522
522
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
523
523
|
"""Predict the class labels for the provided data
|
524
524
|
For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.predict]
|
@@ -572,11 +572,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
572
572
|
subproject=_SUBPROJECT,
|
573
573
|
custom_tags=dict([("autogen", True)]),
|
574
574
|
)
|
575
|
-
@telemetry.add_stmt_params_to_df(
|
576
|
-
project=_PROJECT,
|
577
|
-
subproject=_SUBPROJECT,
|
578
|
-
custom_tags=dict([("autogen", True)]),
|
579
|
-
)
|
580
575
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
581
576
|
"""Method not supported for this class.
|
582
577
|
|
@@ -633,7 +628,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
633
628
|
if False:
|
634
629
|
self.fit(dataset)
|
635
630
|
assert self._sklearn_object is not None
|
636
|
-
|
631
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
632
|
+
return labels
|
637
633
|
else:
|
638
634
|
raise NotImplementedError
|
639
635
|
|
@@ -669,6 +665,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
669
665
|
output_cols = []
|
670
666
|
|
671
667
|
# Make sure column names are valid snowflake identifiers.
|
668
|
+
assert output_cols is not None # Make MyPy happy
|
672
669
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
673
670
|
|
674
671
|
return rv
|
@@ -679,11 +676,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
679
676
|
subproject=_SUBPROJECT,
|
680
677
|
custom_tags=dict([("autogen", True)]),
|
681
678
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
679
|
def predict_proba(
|
688
680
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
689
681
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -726,11 +718,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
726
718
|
subproject=_SUBPROJECT,
|
727
719
|
custom_tags=dict([("autogen", True)]),
|
728
720
|
)
|
729
|
-
@telemetry.add_stmt_params_to_df(
|
730
|
-
project=_PROJECT,
|
731
|
-
subproject=_SUBPROJECT,
|
732
|
-
custom_tags=dict([("autogen", True)]),
|
733
|
-
)
|
734
721
|
def predict_log_proba(
|
735
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
736
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -769,16 +756,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
769
756
|
return output_df
|
770
757
|
|
771
758
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
772
|
-
@telemetry.send_api_usage_telemetry(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
|
-
@telemetry.add_stmt_params_to_df(
|
778
|
-
project=_PROJECT,
|
779
|
-
subproject=_SUBPROJECT,
|
780
|
-
custom_tags=dict([("autogen", True)]),
|
781
|
-
)
|
782
759
|
def decision_function(
|
783
760
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
784
761
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -879,11 +856,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
879
856
|
subproject=_SUBPROJECT,
|
880
857
|
custom_tags=dict([("autogen", True)]),
|
881
858
|
)
|
882
|
-
@telemetry.add_stmt_params_to_df(
|
883
|
-
project=_PROJECT,
|
884
|
-
subproject=_SUBPROJECT,
|
885
|
-
custom_tags=dict([("autogen", True)]),
|
886
|
-
)
|
887
859
|
def kneighbors(
|
888
860
|
self,
|
889
861
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -943,9 +915,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
943
915
|
# For classifier, the type of predict is the same as the type of label
|
944
916
|
if self._sklearn_object._estimator_type == 'classifier':
|
945
917
|
# label columns is the desired type for output
|
946
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
918
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
947
919
|
# rename the output columns
|
948
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
920
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
949
921
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
950
922
|
([] if self._drop_input_cols else inputs)
|
951
923
|
+ outputs)
|