snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class IsolationForest(BaseTransformer):
|
57
58
|
r"""Isolation Forest Algorithm
|
58
59
|
For more details on this class, see [sklearn.ensemble.IsolationForest]
|
@@ -60,6 +61,49 @@ class IsolationForest(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_estimators: int, default=100
|
64
108
|
The number of base estimators in the ensemble.
|
65
109
|
|
@@ -115,42 +159,6 @@ class IsolationForest(BaseTransformer):
|
|
115
159
|
When set to ``True``, reuse the solution of the previous call to fit
|
116
160
|
and add more estimators to the ensemble, otherwise, just fit a whole
|
117
161
|
new forest. See :term:`the Glossary <warm_start>`.
|
118
|
-
|
119
|
-
input_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain features.
|
121
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
122
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
123
|
-
parameters are considered input columns.
|
124
|
-
|
125
|
-
label_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that contain labels.
|
127
|
-
This is a required param for estimators, as there is no way to infer these
|
128
|
-
columns. If this parameter is not specified, then object is fitted without
|
129
|
-
labels (like a transformer).
|
130
|
-
|
131
|
-
output_cols: Optional[Union[str, List[str]]]
|
132
|
-
A string or list of strings representing column names that will store the
|
133
|
-
output of predict and transform operations. The length of output_cols must
|
134
|
-
match the expected number of output columns from the specific estimator or
|
135
|
-
transformer class used.
|
136
|
-
If this parameter is not specified, output column names are derived by
|
137
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
138
|
-
column names work for estimator's predict() method, but output_cols must
|
139
|
-
be set explicitly for transformers.
|
140
|
-
|
141
|
-
sample_weight_col: Optional[str]
|
142
|
-
A string representing the column name containing the sample weights.
|
143
|
-
This argument is only required when working with weighted datasets.
|
144
|
-
|
145
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or a list of strings indicating column names to be excluded from any
|
147
|
-
operations (such as train, transform, or inference). These specified column(s)
|
148
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
149
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
150
|
-
columns, like index columns, during training or inference.
|
151
|
-
|
152
|
-
drop_input_cols: Optional[bool], default=False
|
153
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
154
162
|
"""
|
155
163
|
|
156
164
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -180,7 +188,7 @@ class IsolationForest(BaseTransformer):
|
|
180
188
|
self.set_passthrough_cols(passthrough_cols)
|
181
189
|
self.set_drop_input_cols(drop_input_cols)
|
182
190
|
self.set_sample_weight_col(sample_weight_col)
|
183
|
-
deps = set(
|
191
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
184
192
|
|
185
193
|
self._deps = list(deps)
|
186
194
|
|
@@ -197,13 +205,14 @@ class IsolationForest(BaseTransformer):
|
|
197
205
|
args=init_args,
|
198
206
|
klass=sklearn.ensemble.IsolationForest
|
199
207
|
)
|
200
|
-
self._sklearn_object = sklearn.ensemble.IsolationForest(
|
208
|
+
self._sklearn_object: Any = sklearn.ensemble.IsolationForest(
|
201
209
|
**cleaned_up_init_args,
|
202
210
|
)
|
203
211
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
204
212
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
205
213
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
206
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IsolationForest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
214
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IsolationForest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
215
|
+
self._autogenerated = True
|
207
216
|
|
208
217
|
def _get_rand_id(self) -> str:
|
209
218
|
"""
|
@@ -259,54 +268,48 @@ class IsolationForest(BaseTransformer):
|
|
259
268
|
self
|
260
269
|
"""
|
261
270
|
self._infer_input_output_cols(dataset)
|
262
|
-
if isinstance(dataset,
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
self.
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
271
|
+
if isinstance(dataset, DataFrame):
|
272
|
+
session = dataset._session
|
273
|
+
assert session is not None # keep mypy happy
|
274
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
275
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
276
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
277
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
278
|
+
|
279
|
+
# Specify input columns so column pruning will be enforced
|
280
|
+
selected_cols = self._get_active_columns()
|
281
|
+
if len(selected_cols) > 0:
|
282
|
+
dataset = dataset.select(selected_cols)
|
283
|
+
|
284
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
|
+
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
287
|
+
if SNOWML_SPROC_ENV in os.environ:
|
288
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
289
|
+
project=_PROJECT,
|
290
|
+
subproject=_SUBPROJECT,
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IsolationForest.__class__.__name__),
|
292
|
+
api_calls=[Session.call],
|
293
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
294
|
+
)
|
295
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
|
+
pd_df.columns = dataset.columns
|
297
|
+
dataset = pd_df
|
298
|
+
|
299
|
+
model_trainer = ModelTrainerBuilder.build(
|
300
|
+
estimator=self._sklearn_object,
|
301
|
+
dataset=dataset,
|
302
|
+
input_cols=self.input_cols,
|
303
|
+
label_cols=self.label_cols,
|
304
|
+
sample_weight_col=self.sample_weight_col,
|
305
|
+
autogenerated=self._autogenerated,
|
306
|
+
subproject=_SUBPROJECT
|
307
|
+
)
|
308
|
+
self._sklearn_object = model_trainer.train()
|
278
309
|
self._is_fitted = True
|
279
310
|
self._get_model_signatures(dataset)
|
280
311
|
return self
|
281
312
|
|
282
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
283
|
-
session = dataset._session
|
284
|
-
assert session is not None # keep mypy happy
|
285
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
286
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
287
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
288
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
289
|
-
|
290
|
-
# Specify input columns so column pruning will be enforced
|
291
|
-
selected_cols = self._get_active_columns()
|
292
|
-
if len(selected_cols) > 0:
|
293
|
-
dataset = dataset.select(selected_cols)
|
294
|
-
|
295
|
-
estimator = self._sklearn_object
|
296
|
-
assert estimator is not None # Keep mypy happy
|
297
|
-
|
298
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
299
|
-
|
300
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
301
|
-
dataset,
|
302
|
-
session,
|
303
|
-
estimator,
|
304
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
305
|
-
self.input_cols,
|
306
|
-
self.label_cols,
|
307
|
-
self.sample_weight_col,
|
308
|
-
)
|
309
|
-
|
310
313
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
311
314
|
if self._drop_input_cols:
|
312
315
|
return []
|
@@ -494,11 +497,6 @@ class IsolationForest(BaseTransformer):
|
|
494
497
|
subproject=_SUBPROJECT,
|
495
498
|
custom_tags=dict([("autogen", True)]),
|
496
499
|
)
|
497
|
-
@telemetry.add_stmt_params_to_df(
|
498
|
-
project=_PROJECT,
|
499
|
-
subproject=_SUBPROJECT,
|
500
|
-
custom_tags=dict([("autogen", True)]),
|
501
|
-
)
|
502
500
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
503
501
|
"""Predict if a particular sample is an outlier or not
|
504
502
|
For more details on this function, see [sklearn.ensemble.IsolationForest.predict]
|
@@ -552,11 +550,6 @@ class IsolationForest(BaseTransformer):
|
|
552
550
|
subproject=_SUBPROJECT,
|
553
551
|
custom_tags=dict([("autogen", True)]),
|
554
552
|
)
|
555
|
-
@telemetry.add_stmt_params_to_df(
|
556
|
-
project=_PROJECT,
|
557
|
-
subproject=_SUBPROJECT,
|
558
|
-
custom_tags=dict([("autogen", True)]),
|
559
|
-
)
|
560
553
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
561
554
|
"""Method not supported for this class.
|
562
555
|
|
@@ -615,7 +608,8 @@ class IsolationForest(BaseTransformer):
|
|
615
608
|
if False:
|
616
609
|
self.fit(dataset)
|
617
610
|
assert self._sklearn_object is not None
|
618
|
-
|
611
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
612
|
+
return labels
|
619
613
|
else:
|
620
614
|
raise NotImplementedError
|
621
615
|
|
@@ -651,6 +645,7 @@ class IsolationForest(BaseTransformer):
|
|
651
645
|
output_cols = []
|
652
646
|
|
653
647
|
# Make sure column names are valid snowflake identifiers.
|
648
|
+
assert output_cols is not None # Make MyPy happy
|
654
649
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
655
650
|
|
656
651
|
return rv
|
@@ -661,11 +656,6 @@ class IsolationForest(BaseTransformer):
|
|
661
656
|
subproject=_SUBPROJECT,
|
662
657
|
custom_tags=dict([("autogen", True)]),
|
663
658
|
)
|
664
|
-
@telemetry.add_stmt_params_to_df(
|
665
|
-
project=_PROJECT,
|
666
|
-
subproject=_SUBPROJECT,
|
667
|
-
custom_tags=dict([("autogen", True)]),
|
668
|
-
)
|
669
659
|
def predict_proba(
|
670
660
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
671
661
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -706,11 +696,6 @@ class IsolationForest(BaseTransformer):
|
|
706
696
|
subproject=_SUBPROJECT,
|
707
697
|
custom_tags=dict([("autogen", True)]),
|
708
698
|
)
|
709
|
-
@telemetry.add_stmt_params_to_df(
|
710
|
-
project=_PROJECT,
|
711
|
-
subproject=_SUBPROJECT,
|
712
|
-
custom_tags=dict([("autogen", True)]),
|
713
|
-
)
|
714
699
|
def predict_log_proba(
|
715
700
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
716
701
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -747,16 +732,6 @@ class IsolationForest(BaseTransformer):
|
|
747
732
|
return output_df
|
748
733
|
|
749
734
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
750
|
-
@telemetry.send_api_usage_telemetry(
|
751
|
-
project=_PROJECT,
|
752
|
-
subproject=_SUBPROJECT,
|
753
|
-
custom_tags=dict([("autogen", True)]),
|
754
|
-
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
735
|
def decision_function(
|
761
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
762
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -857,11 +832,6 @@ class IsolationForest(BaseTransformer):
|
|
857
832
|
subproject=_SUBPROJECT,
|
858
833
|
custom_tags=dict([("autogen", True)]),
|
859
834
|
)
|
860
|
-
@telemetry.add_stmt_params_to_df(
|
861
|
-
project=_PROJECT,
|
862
|
-
subproject=_SUBPROJECT,
|
863
|
-
custom_tags=dict([("autogen", True)]),
|
864
|
-
)
|
865
835
|
def kneighbors(
|
866
836
|
self,
|
867
837
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -921,9 +891,9 @@ class IsolationForest(BaseTransformer):
|
|
921
891
|
# For classifier, the type of predict is the same as the type of label
|
922
892
|
if self._sklearn_object._estimator_type == 'classifier':
|
923
893
|
# label columns is the desired type for output
|
924
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
894
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
925
895
|
# rename the output columns
|
926
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
896
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
927
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
928
898
|
([] if self._drop_input_cols else inputs)
|
929
899
|
+ outputs)
|