snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NuSVC(BaseTransformer):
57
58
  r"""Nu-Support Vector Classification
58
59
  For more details on this class, see [sklearn.svm.NuSVC]
@@ -60,6 +61,51 @@ class NuSVC(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  nu: float, default=0.5
64
110
  An upper bound on the fraction of margin errors (see :ref:`User Guide
65
111
  <nu_svc>`) and a lower bound of the fraction of support vectors.
@@ -137,42 +183,6 @@ class NuSVC(BaseTransformer):
137
183
  probability estimates. Ignored when `probability` is False.
138
184
  Pass an int for reproducible output across multiple function calls.
139
185
  See :term:`Glossary <random_state>`.
140
-
141
- input_cols: Optional[Union[str, List[str]]]
142
- A string or list of strings representing column names that contain features.
143
- If this parameter is not specified, all columns in the input DataFrame except
144
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
145
- parameters are considered input columns.
146
-
147
- label_cols: Optional[Union[str, List[str]]]
148
- A string or list of strings representing column names that contain labels.
149
- This is a required param for estimators, as there is no way to infer these
150
- columns. If this parameter is not specified, then object is fitted without
151
- labels (like a transformer).
152
-
153
- output_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that will store the
155
- output of predict and transform operations. The length of output_cols must
156
- match the expected number of output columns from the specific estimator or
157
- transformer class used.
158
- If this parameter is not specified, output column names are derived by
159
- adding an OUTPUT_ prefix to the label column names. These inferred output
160
- column names work for estimator's predict() method, but output_cols must
161
- be set explicitly for transformers.
162
-
163
- sample_weight_col: Optional[str]
164
- A string representing the column name containing the sample weights.
165
- This argument is only required when working with weighted datasets.
166
-
167
- passthrough_cols: Optional[Union[str, List[str]]]
168
- A string or a list of strings indicating column names to be excluded from any
169
- operations (such as train, transform, or inference). These specified column(s)
170
- will remain untouched throughout the process. This option is helpful in scenarios
171
- requiring automatic input_cols inference, but need to avoid using specific
172
- columns, like index columns, during training or inference.
173
-
174
- drop_input_cols: Optional[bool], default=False
175
- If set, the response of predict(), transform() methods will not contain input columns.
176
186
  """
177
187
 
178
188
  def __init__( # type: ignore[no-untyped-def]
@@ -208,7 +218,7 @@ class NuSVC(BaseTransformer):
208
218
  self.set_passthrough_cols(passthrough_cols)
209
219
  self.set_drop_input_cols(drop_input_cols)
210
220
  self.set_sample_weight_col(sample_weight_col)
211
- deps = set(SklearnWrapperProvider().dependencies)
221
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
212
222
 
213
223
  self._deps = list(deps)
214
224
 
@@ -231,13 +241,14 @@ class NuSVC(BaseTransformer):
231
241
  args=init_args,
232
242
  klass=sklearn.svm.NuSVC
233
243
  )
234
- self._sklearn_object = sklearn.svm.NuSVC(
244
+ self._sklearn_object: Any = sklearn.svm.NuSVC(
235
245
  **cleaned_up_init_args,
236
246
  )
237
247
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
238
248
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
239
249
  self._snowpark_cols: Optional[List[str]] = self.input_cols
240
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
250
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
251
+ self._autogenerated = True
241
252
 
242
253
  def _get_rand_id(self) -> str:
243
254
  """
@@ -293,54 +304,48 @@ class NuSVC(BaseTransformer):
293
304
  self
294
305
  """
295
306
  self._infer_input_output_cols(dataset)
296
- if isinstance(dataset, pd.DataFrame):
297
- assert self._sklearn_object is not None # keep mypy happy
298
- self._sklearn_object = self._handlers.fit_pandas(
299
- dataset,
300
- self._sklearn_object,
301
- self.input_cols,
302
- self.label_cols,
303
- self.sample_weight_col
304
- )
305
- elif isinstance(dataset, DataFrame):
306
- self._fit_snowpark(dataset)
307
- else:
308
- raise TypeError(
309
- f"Unexpected dataset type: {type(dataset)}."
310
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
311
- )
307
+ if isinstance(dataset, DataFrame):
308
+ session = dataset._session
309
+ assert session is not None # keep mypy happy
310
+ # Validate that key package version in user workspace are supported in snowflake conda channel
311
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
312
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
313
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
314
+
315
+ # Specify input columns so column pruning will be enforced
316
+ selected_cols = self._get_active_columns()
317
+ if len(selected_cols) > 0:
318
+ dataset = dataset.select(selected_cols)
319
+
320
+ self._snowpark_cols = dataset.select(self.input_cols).columns
321
+
322
+ # If we are already in a stored procedure, no need to kick off another one.
323
+ if SNOWML_SPROC_ENV in os.environ:
324
+ statement_params = telemetry.get_function_usage_statement_params(
325
+ project=_PROJECT,
326
+ subproject=_SUBPROJECT,
327
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
328
+ api_calls=[Session.call],
329
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
330
+ )
331
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
332
+ pd_df.columns = dataset.columns
333
+ dataset = pd_df
334
+
335
+ model_trainer = ModelTrainerBuilder.build(
336
+ estimator=self._sklearn_object,
337
+ dataset=dataset,
338
+ input_cols=self.input_cols,
339
+ label_cols=self.label_cols,
340
+ sample_weight_col=self.sample_weight_col,
341
+ autogenerated=self._autogenerated,
342
+ subproject=_SUBPROJECT
343
+ )
344
+ self._sklearn_object = model_trainer.train()
312
345
  self._is_fitted = True
313
346
  self._get_model_signatures(dataset)
314
347
  return self
315
348
 
316
- def _fit_snowpark(self, dataset: DataFrame) -> None:
317
- session = dataset._session
318
- assert session is not None # keep mypy happy
319
- # Validate that key package version in user workspace are supported in snowflake conda channel
320
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
321
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
322
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
323
-
324
- # Specify input columns so column pruning will be enforced
325
- selected_cols = self._get_active_columns()
326
- if len(selected_cols) > 0:
327
- dataset = dataset.select(selected_cols)
328
-
329
- estimator = self._sklearn_object
330
- assert estimator is not None # Keep mypy happy
331
-
332
- self._snowpark_cols = dataset.select(self.input_cols).columns
333
-
334
- self._sklearn_object = self._handlers.fit_snowpark(
335
- dataset,
336
- session,
337
- estimator,
338
- ["snowflake-snowpark-python"] + self._get_dependencies(),
339
- self.input_cols,
340
- self.label_cols,
341
- self.sample_weight_col,
342
- )
343
-
344
349
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
345
350
  if self._drop_input_cols:
346
351
  return []
@@ -528,11 +533,6 @@ class NuSVC(BaseTransformer):
528
533
  subproject=_SUBPROJECT,
529
534
  custom_tags=dict([("autogen", True)]),
530
535
  )
531
- @telemetry.add_stmt_params_to_df(
532
- project=_PROJECT,
533
- subproject=_SUBPROJECT,
534
- custom_tags=dict([("autogen", True)]),
535
- )
536
536
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
537
537
  """Perform classification on samples in X
538
538
  For more details on this function, see [sklearn.svm.NuSVC.predict]
@@ -586,11 +586,6 @@ class NuSVC(BaseTransformer):
586
586
  subproject=_SUBPROJECT,
587
587
  custom_tags=dict([("autogen", True)]),
588
588
  )
589
- @telemetry.add_stmt_params_to_df(
590
- project=_PROJECT,
591
- subproject=_SUBPROJECT,
592
- custom_tags=dict([("autogen", True)]),
593
- )
594
589
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
595
590
  """Method not supported for this class.
596
591
 
@@ -647,7 +642,8 @@ class NuSVC(BaseTransformer):
647
642
  if False:
648
643
  self.fit(dataset)
649
644
  assert self._sklearn_object is not None
650
- return self._sklearn_object.labels_
645
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
646
+ return labels
651
647
  else:
652
648
  raise NotImplementedError
653
649
 
@@ -683,6 +679,7 @@ class NuSVC(BaseTransformer):
683
679
  output_cols = []
684
680
 
685
681
  # Make sure column names are valid snowflake identifiers.
682
+ assert output_cols is not None # Make MyPy happy
686
683
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
687
684
 
688
685
  return rv
@@ -693,11 +690,6 @@ class NuSVC(BaseTransformer):
693
690
  subproject=_SUBPROJECT,
694
691
  custom_tags=dict([("autogen", True)]),
695
692
  )
696
- @telemetry.add_stmt_params_to_df(
697
- project=_PROJECT,
698
- subproject=_SUBPROJECT,
699
- custom_tags=dict([("autogen", True)]),
700
- )
701
693
  def predict_proba(
702
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
703
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -740,11 +732,6 @@ class NuSVC(BaseTransformer):
740
732
  subproject=_SUBPROJECT,
741
733
  custom_tags=dict([("autogen", True)]),
742
734
  )
743
- @telemetry.add_stmt_params_to_df(
744
- project=_PROJECT,
745
- subproject=_SUBPROJECT,
746
- custom_tags=dict([("autogen", True)]),
747
- )
748
735
  def predict_log_proba(
749
736
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
750
737
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -783,16 +770,6 @@ class NuSVC(BaseTransformer):
783
770
  return output_df
784
771
 
785
772
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
786
- @telemetry.send_api_usage_telemetry(
787
- project=_PROJECT,
788
- subproject=_SUBPROJECT,
789
- custom_tags=dict([("autogen", True)]),
790
- )
791
- @telemetry.add_stmt_params_to_df(
792
- project=_PROJECT,
793
- subproject=_SUBPROJECT,
794
- custom_tags=dict([("autogen", True)]),
795
- )
796
773
  def decision_function(
797
774
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
798
775
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -895,11 +872,6 @@ class NuSVC(BaseTransformer):
895
872
  subproject=_SUBPROJECT,
896
873
  custom_tags=dict([("autogen", True)]),
897
874
  )
898
- @telemetry.add_stmt_params_to_df(
899
- project=_PROJECT,
900
- subproject=_SUBPROJECT,
901
- custom_tags=dict([("autogen", True)]),
902
- )
903
875
  def kneighbors(
904
876
  self,
905
877
  dataset: Union[DataFrame, pd.DataFrame],
@@ -959,9 +931,9 @@ class NuSVC(BaseTransformer):
959
931
  # For classifier, the type of predict is the same as the type of label
960
932
  if self._sklearn_object._estimator_type == 'classifier':
961
933
  # label columns is the desired type for output
962
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
934
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
963
935
  # rename the output columns
964
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
936
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
965
937
  self._model_signature_dict["predict"] = ModelSignature(inputs,
966
938
  ([] if self._drop_input_cols else inputs)
967
939
  + outputs)