snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NuSVC(BaseTransformer):
|
57
58
|
r"""Nu-Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.NuSVC]
|
@@ -60,6 +61,51 @@ class NuSVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
nu: float, default=0.5
|
64
110
|
An upper bound on the fraction of margin errors (see :ref:`User Guide
|
65
111
|
<nu_svc>`) and a lower bound of the fraction of support vectors.
|
@@ -137,42 +183,6 @@ class NuSVC(BaseTransformer):
|
|
137
183
|
probability estimates. Ignored when `probability` is False.
|
138
184
|
Pass an int for reproducible output across multiple function calls.
|
139
185
|
See :term:`Glossary <random_state>`.
|
140
|
-
|
141
|
-
input_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that contain features.
|
143
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
144
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
145
|
-
parameters are considered input columns.
|
146
|
-
|
147
|
-
label_cols: Optional[Union[str, List[str]]]
|
148
|
-
A string or list of strings representing column names that contain labels.
|
149
|
-
This is a required param for estimators, as there is no way to infer these
|
150
|
-
columns. If this parameter is not specified, then object is fitted without
|
151
|
-
labels (like a transformer).
|
152
|
-
|
153
|
-
output_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that will store the
|
155
|
-
output of predict and transform operations. The length of output_cols must
|
156
|
-
match the expected number of output columns from the specific estimator or
|
157
|
-
transformer class used.
|
158
|
-
If this parameter is not specified, output column names are derived by
|
159
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
160
|
-
column names work for estimator's predict() method, but output_cols must
|
161
|
-
be set explicitly for transformers.
|
162
|
-
|
163
|
-
sample_weight_col: Optional[str]
|
164
|
-
A string representing the column name containing the sample weights.
|
165
|
-
This argument is only required when working with weighted datasets.
|
166
|
-
|
167
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
168
|
-
A string or a list of strings indicating column names to be excluded from any
|
169
|
-
operations (such as train, transform, or inference). These specified column(s)
|
170
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
171
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
172
|
-
columns, like index columns, during training or inference.
|
173
|
-
|
174
|
-
drop_input_cols: Optional[bool], default=False
|
175
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
176
186
|
"""
|
177
187
|
|
178
188
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -208,7 +218,7 @@ class NuSVC(BaseTransformer):
|
|
208
218
|
self.set_passthrough_cols(passthrough_cols)
|
209
219
|
self.set_drop_input_cols(drop_input_cols)
|
210
220
|
self.set_sample_weight_col(sample_weight_col)
|
211
|
-
deps = set(
|
221
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
212
222
|
|
213
223
|
self._deps = list(deps)
|
214
224
|
|
@@ -231,13 +241,14 @@ class NuSVC(BaseTransformer):
|
|
231
241
|
args=init_args,
|
232
242
|
klass=sklearn.svm.NuSVC
|
233
243
|
)
|
234
|
-
self._sklearn_object = sklearn.svm.NuSVC(
|
244
|
+
self._sklearn_object: Any = sklearn.svm.NuSVC(
|
235
245
|
**cleaned_up_init_args,
|
236
246
|
)
|
237
247
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
238
248
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
239
249
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
240
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
250
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
251
|
+
self._autogenerated = True
|
241
252
|
|
242
253
|
def _get_rand_id(self) -> str:
|
243
254
|
"""
|
@@ -293,54 +304,48 @@ class NuSVC(BaseTransformer):
|
|
293
304
|
self
|
294
305
|
"""
|
295
306
|
self._infer_input_output_cols(dataset)
|
296
|
-
if isinstance(dataset,
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
self.
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
307
|
+
if isinstance(dataset, DataFrame):
|
308
|
+
session = dataset._session
|
309
|
+
assert session is not None # keep mypy happy
|
310
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
311
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
312
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
313
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
314
|
+
|
315
|
+
# Specify input columns so column pruning will be enforced
|
316
|
+
selected_cols = self._get_active_columns()
|
317
|
+
if len(selected_cols) > 0:
|
318
|
+
dataset = dataset.select(selected_cols)
|
319
|
+
|
320
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
321
|
+
|
322
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
323
|
+
if SNOWML_SPROC_ENV in os.environ:
|
324
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
325
|
+
project=_PROJECT,
|
326
|
+
subproject=_SUBPROJECT,
|
327
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
|
328
|
+
api_calls=[Session.call],
|
329
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
330
|
+
)
|
331
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
332
|
+
pd_df.columns = dataset.columns
|
333
|
+
dataset = pd_df
|
334
|
+
|
335
|
+
model_trainer = ModelTrainerBuilder.build(
|
336
|
+
estimator=self._sklearn_object,
|
337
|
+
dataset=dataset,
|
338
|
+
input_cols=self.input_cols,
|
339
|
+
label_cols=self.label_cols,
|
340
|
+
sample_weight_col=self.sample_weight_col,
|
341
|
+
autogenerated=self._autogenerated,
|
342
|
+
subproject=_SUBPROJECT
|
343
|
+
)
|
344
|
+
self._sklearn_object = model_trainer.train()
|
312
345
|
self._is_fitted = True
|
313
346
|
self._get_model_signatures(dataset)
|
314
347
|
return self
|
315
348
|
|
316
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
317
|
-
session = dataset._session
|
318
|
-
assert session is not None # keep mypy happy
|
319
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
320
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
321
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
322
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
323
|
-
|
324
|
-
# Specify input columns so column pruning will be enforced
|
325
|
-
selected_cols = self._get_active_columns()
|
326
|
-
if len(selected_cols) > 0:
|
327
|
-
dataset = dataset.select(selected_cols)
|
328
|
-
|
329
|
-
estimator = self._sklearn_object
|
330
|
-
assert estimator is not None # Keep mypy happy
|
331
|
-
|
332
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
333
|
-
|
334
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
335
|
-
dataset,
|
336
|
-
session,
|
337
|
-
estimator,
|
338
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
339
|
-
self.input_cols,
|
340
|
-
self.label_cols,
|
341
|
-
self.sample_weight_col,
|
342
|
-
)
|
343
|
-
|
344
349
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
345
350
|
if self._drop_input_cols:
|
346
351
|
return []
|
@@ -528,11 +533,6 @@ class NuSVC(BaseTransformer):
|
|
528
533
|
subproject=_SUBPROJECT,
|
529
534
|
custom_tags=dict([("autogen", True)]),
|
530
535
|
)
|
531
|
-
@telemetry.add_stmt_params_to_df(
|
532
|
-
project=_PROJECT,
|
533
|
-
subproject=_SUBPROJECT,
|
534
|
-
custom_tags=dict([("autogen", True)]),
|
535
|
-
)
|
536
536
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
537
537
|
"""Perform classification on samples in X
|
538
538
|
For more details on this function, see [sklearn.svm.NuSVC.predict]
|
@@ -586,11 +586,6 @@ class NuSVC(BaseTransformer):
|
|
586
586
|
subproject=_SUBPROJECT,
|
587
587
|
custom_tags=dict([("autogen", True)]),
|
588
588
|
)
|
589
|
-
@telemetry.add_stmt_params_to_df(
|
590
|
-
project=_PROJECT,
|
591
|
-
subproject=_SUBPROJECT,
|
592
|
-
custom_tags=dict([("autogen", True)]),
|
593
|
-
)
|
594
589
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
595
590
|
"""Method not supported for this class.
|
596
591
|
|
@@ -647,7 +642,8 @@ class NuSVC(BaseTransformer):
|
|
647
642
|
if False:
|
648
643
|
self.fit(dataset)
|
649
644
|
assert self._sklearn_object is not None
|
650
|
-
|
645
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
646
|
+
return labels
|
651
647
|
else:
|
652
648
|
raise NotImplementedError
|
653
649
|
|
@@ -683,6 +679,7 @@ class NuSVC(BaseTransformer):
|
|
683
679
|
output_cols = []
|
684
680
|
|
685
681
|
# Make sure column names are valid snowflake identifiers.
|
682
|
+
assert output_cols is not None # Make MyPy happy
|
686
683
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
687
684
|
|
688
685
|
return rv
|
@@ -693,11 +690,6 @@ class NuSVC(BaseTransformer):
|
|
693
690
|
subproject=_SUBPROJECT,
|
694
691
|
custom_tags=dict([("autogen", True)]),
|
695
692
|
)
|
696
|
-
@telemetry.add_stmt_params_to_df(
|
697
|
-
project=_PROJECT,
|
698
|
-
subproject=_SUBPROJECT,
|
699
|
-
custom_tags=dict([("autogen", True)]),
|
700
|
-
)
|
701
693
|
def predict_proba(
|
702
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
703
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -740,11 +732,6 @@ class NuSVC(BaseTransformer):
|
|
740
732
|
subproject=_SUBPROJECT,
|
741
733
|
custom_tags=dict([("autogen", True)]),
|
742
734
|
)
|
743
|
-
@telemetry.add_stmt_params_to_df(
|
744
|
-
project=_PROJECT,
|
745
|
-
subproject=_SUBPROJECT,
|
746
|
-
custom_tags=dict([("autogen", True)]),
|
747
|
-
)
|
748
735
|
def predict_log_proba(
|
749
736
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
750
737
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -783,16 +770,6 @@ class NuSVC(BaseTransformer):
|
|
783
770
|
return output_df
|
784
771
|
|
785
772
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
786
|
-
@telemetry.send_api_usage_telemetry(
|
787
|
-
project=_PROJECT,
|
788
|
-
subproject=_SUBPROJECT,
|
789
|
-
custom_tags=dict([("autogen", True)]),
|
790
|
-
)
|
791
|
-
@telemetry.add_stmt_params_to_df(
|
792
|
-
project=_PROJECT,
|
793
|
-
subproject=_SUBPROJECT,
|
794
|
-
custom_tags=dict([("autogen", True)]),
|
795
|
-
)
|
796
773
|
def decision_function(
|
797
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
798
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -895,11 +872,6 @@ class NuSVC(BaseTransformer):
|
|
895
872
|
subproject=_SUBPROJECT,
|
896
873
|
custom_tags=dict([("autogen", True)]),
|
897
874
|
)
|
898
|
-
@telemetry.add_stmt_params_to_df(
|
899
|
-
project=_PROJECT,
|
900
|
-
subproject=_SUBPROJECT,
|
901
|
-
custom_tags=dict([("autogen", True)]),
|
902
|
-
)
|
903
875
|
def kneighbors(
|
904
876
|
self,
|
905
877
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -959,9 +931,9 @@ class NuSVC(BaseTransformer):
|
|
959
931
|
# For classifier, the type of predict is the same as the type of label
|
960
932
|
if self._sklearn_object._estimator_type == 'classifier':
|
961
933
|
# label columns is the desired type for output
|
962
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
934
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
963
935
|
# rename the output columns
|
964
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
936
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
965
937
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
966
938
|
([] if self._drop_input_cols else inputs)
|
967
939
|
+ outputs)
|