snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
snowflake/ml/modeling/svm/svc.py
CHANGED
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SVC(BaseTransformer):
|
57
58
|
r"""C-Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.SVC]
|
@@ -60,6 +61,51 @@ class SVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
C: float, default=1.0
|
64
110
|
Regularization parameter. The strength of the regularization is
|
65
111
|
inversely proportional to C. Must be strictly positive. The penalty
|
@@ -140,42 +186,6 @@ class SVC(BaseTransformer):
|
|
140
186
|
probability estimates. Ignored when `probability` is False.
|
141
187
|
Pass an int for reproducible output across multiple function calls.
|
142
188
|
See :term:`Glossary <random_state>`.
|
143
|
-
|
144
|
-
input_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that contain features.
|
146
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
147
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
148
|
-
parameters are considered input columns.
|
149
|
-
|
150
|
-
label_cols: Optional[Union[str, List[str]]]
|
151
|
-
A string or list of strings representing column names that contain labels.
|
152
|
-
This is a required param for estimators, as there is no way to infer these
|
153
|
-
columns. If this parameter is not specified, then object is fitted without
|
154
|
-
labels (like a transformer).
|
155
|
-
|
156
|
-
output_cols: Optional[Union[str, List[str]]]
|
157
|
-
A string or list of strings representing column names that will store the
|
158
|
-
output of predict and transform operations. The length of output_cols must
|
159
|
-
match the expected number of output columns from the specific estimator or
|
160
|
-
transformer class used.
|
161
|
-
If this parameter is not specified, output column names are derived by
|
162
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
163
|
-
column names work for estimator's predict() method, but output_cols must
|
164
|
-
be set explicitly for transformers.
|
165
|
-
|
166
|
-
sample_weight_col: Optional[str]
|
167
|
-
A string representing the column name containing the sample weights.
|
168
|
-
This argument is only required when working with weighted datasets.
|
169
|
-
|
170
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
171
|
-
A string or a list of strings indicating column names to be excluded from any
|
172
|
-
operations (such as train, transform, or inference). These specified column(s)
|
173
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
174
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
175
|
-
columns, like index columns, during training or inference.
|
176
|
-
|
177
|
-
drop_input_cols: Optional[bool], default=False
|
178
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
179
189
|
"""
|
180
190
|
|
181
191
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -211,7 +221,7 @@ class SVC(BaseTransformer):
|
|
211
221
|
self.set_passthrough_cols(passthrough_cols)
|
212
222
|
self.set_drop_input_cols(drop_input_cols)
|
213
223
|
self.set_sample_weight_col(sample_weight_col)
|
214
|
-
deps = set(
|
224
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
215
225
|
|
216
226
|
self._deps = list(deps)
|
217
227
|
|
@@ -234,13 +244,14 @@ class SVC(BaseTransformer):
|
|
234
244
|
args=init_args,
|
235
245
|
klass=sklearn.svm.SVC
|
236
246
|
)
|
237
|
-
self._sklearn_object = sklearn.svm.SVC(
|
247
|
+
self._sklearn_object: Any = sklearn.svm.SVC(
|
238
248
|
**cleaned_up_init_args,
|
239
249
|
)
|
240
250
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
241
251
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
242
252
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
243
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
253
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
254
|
+
self._autogenerated = True
|
244
255
|
|
245
256
|
def _get_rand_id(self) -> str:
|
246
257
|
"""
|
@@ -296,54 +307,48 @@ class SVC(BaseTransformer):
|
|
296
307
|
self
|
297
308
|
"""
|
298
309
|
self._infer_input_output_cols(dataset)
|
299
|
-
if isinstance(dataset,
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
self.
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
310
|
+
if isinstance(dataset, DataFrame):
|
311
|
+
session = dataset._session
|
312
|
+
assert session is not None # keep mypy happy
|
313
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
314
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
315
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
316
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
+
|
318
|
+
# Specify input columns so column pruning will be enforced
|
319
|
+
selected_cols = self._get_active_columns()
|
320
|
+
if len(selected_cols) > 0:
|
321
|
+
dataset = dataset.select(selected_cols)
|
322
|
+
|
323
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
324
|
+
|
325
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
326
|
+
if SNOWML_SPROC_ENV in os.environ:
|
327
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
328
|
+
project=_PROJECT,
|
329
|
+
subproject=_SUBPROJECT,
|
330
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
|
331
|
+
api_calls=[Session.call],
|
332
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
333
|
+
)
|
334
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
335
|
+
pd_df.columns = dataset.columns
|
336
|
+
dataset = pd_df
|
337
|
+
|
338
|
+
model_trainer = ModelTrainerBuilder.build(
|
339
|
+
estimator=self._sklearn_object,
|
340
|
+
dataset=dataset,
|
341
|
+
input_cols=self.input_cols,
|
342
|
+
label_cols=self.label_cols,
|
343
|
+
sample_weight_col=self.sample_weight_col,
|
344
|
+
autogenerated=self._autogenerated,
|
345
|
+
subproject=_SUBPROJECT
|
346
|
+
)
|
347
|
+
self._sklearn_object = model_trainer.train()
|
315
348
|
self._is_fitted = True
|
316
349
|
self._get_model_signatures(dataset)
|
317
350
|
return self
|
318
351
|
|
319
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
320
|
-
session = dataset._session
|
321
|
-
assert session is not None # keep mypy happy
|
322
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
323
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
324
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
325
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
326
|
-
|
327
|
-
# Specify input columns so column pruning will be enforced
|
328
|
-
selected_cols = self._get_active_columns()
|
329
|
-
if len(selected_cols) > 0:
|
330
|
-
dataset = dataset.select(selected_cols)
|
331
|
-
|
332
|
-
estimator = self._sklearn_object
|
333
|
-
assert estimator is not None # Keep mypy happy
|
334
|
-
|
335
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
336
|
-
|
337
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
338
|
-
dataset,
|
339
|
-
session,
|
340
|
-
estimator,
|
341
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
342
|
-
self.input_cols,
|
343
|
-
self.label_cols,
|
344
|
-
self.sample_weight_col,
|
345
|
-
)
|
346
|
-
|
347
352
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
348
353
|
if self._drop_input_cols:
|
349
354
|
return []
|
@@ -531,11 +536,6 @@ class SVC(BaseTransformer):
|
|
531
536
|
subproject=_SUBPROJECT,
|
532
537
|
custom_tags=dict([("autogen", True)]),
|
533
538
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
539
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
540
|
"""Perform classification on samples in X
|
541
541
|
For more details on this function, see [sklearn.svm.SVC.predict]
|
@@ -589,11 +589,6 @@ class SVC(BaseTransformer):
|
|
589
589
|
subproject=_SUBPROJECT,
|
590
590
|
custom_tags=dict([("autogen", True)]),
|
591
591
|
)
|
592
|
-
@telemetry.add_stmt_params_to_df(
|
593
|
-
project=_PROJECT,
|
594
|
-
subproject=_SUBPROJECT,
|
595
|
-
custom_tags=dict([("autogen", True)]),
|
596
|
-
)
|
597
592
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
598
593
|
"""Method not supported for this class.
|
599
594
|
|
@@ -650,7 +645,8 @@ class SVC(BaseTransformer):
|
|
650
645
|
if False:
|
651
646
|
self.fit(dataset)
|
652
647
|
assert self._sklearn_object is not None
|
653
|
-
|
648
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
649
|
+
return labels
|
654
650
|
else:
|
655
651
|
raise NotImplementedError
|
656
652
|
|
@@ -686,6 +682,7 @@ class SVC(BaseTransformer):
|
|
686
682
|
output_cols = []
|
687
683
|
|
688
684
|
# Make sure column names are valid snowflake identifiers.
|
685
|
+
assert output_cols is not None # Make MyPy happy
|
689
686
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
690
687
|
|
691
688
|
return rv
|
@@ -696,11 +693,6 @@ class SVC(BaseTransformer):
|
|
696
693
|
subproject=_SUBPROJECT,
|
697
694
|
custom_tags=dict([("autogen", True)]),
|
698
695
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
696
|
def predict_proba(
|
705
697
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
706
698
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -743,11 +735,6 @@ class SVC(BaseTransformer):
|
|
743
735
|
subproject=_SUBPROJECT,
|
744
736
|
custom_tags=dict([("autogen", True)]),
|
745
737
|
)
|
746
|
-
@telemetry.add_stmt_params_to_df(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
738
|
def predict_log_proba(
|
752
739
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
753
740
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -786,16 +773,6 @@ class SVC(BaseTransformer):
|
|
786
773
|
return output_df
|
787
774
|
|
788
775
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
789
|
-
@telemetry.send_api_usage_telemetry(
|
790
|
-
project=_PROJECT,
|
791
|
-
subproject=_SUBPROJECT,
|
792
|
-
custom_tags=dict([("autogen", True)]),
|
793
|
-
)
|
794
|
-
@telemetry.add_stmt_params_to_df(
|
795
|
-
project=_PROJECT,
|
796
|
-
subproject=_SUBPROJECT,
|
797
|
-
custom_tags=dict([("autogen", True)]),
|
798
|
-
)
|
799
776
|
def decision_function(
|
800
777
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
801
778
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -898,11 +875,6 @@ class SVC(BaseTransformer):
|
|
898
875
|
subproject=_SUBPROJECT,
|
899
876
|
custom_tags=dict([("autogen", True)]),
|
900
877
|
)
|
901
|
-
@telemetry.add_stmt_params_to_df(
|
902
|
-
project=_PROJECT,
|
903
|
-
subproject=_SUBPROJECT,
|
904
|
-
custom_tags=dict([("autogen", True)]),
|
905
|
-
)
|
906
878
|
def kneighbors(
|
907
879
|
self,
|
908
880
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -962,9 +934,9 @@ class SVC(BaseTransformer):
|
|
962
934
|
# For classifier, the type of predict is the same as the type of label
|
963
935
|
if self._sklearn_object._estimator_type == 'classifier':
|
964
936
|
# label columns is the desired type for output
|
965
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
937
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
966
938
|
# rename the output columns
|
967
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
939
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
968
940
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
969
941
|
([] if self._drop_input_cols else inputs)
|
970
942
|
+ outputs)
|