snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SVC(BaseTransformer):
57
58
  r"""C-Support Vector Classification
58
59
  For more details on this class, see [sklearn.svm.SVC]
@@ -60,6 +61,51 @@ class SVC(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  C: float, default=1.0
64
110
  Regularization parameter. The strength of the regularization is
65
111
  inversely proportional to C. Must be strictly positive. The penalty
@@ -140,42 +186,6 @@ class SVC(BaseTransformer):
140
186
  probability estimates. Ignored when `probability` is False.
141
187
  Pass an int for reproducible output across multiple function calls.
142
188
  See :term:`Glossary <random_state>`.
143
-
144
- input_cols: Optional[Union[str, List[str]]]
145
- A string or list of strings representing column names that contain features.
146
- If this parameter is not specified, all columns in the input DataFrame except
147
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
148
- parameters are considered input columns.
149
-
150
- label_cols: Optional[Union[str, List[str]]]
151
- A string or list of strings representing column names that contain labels.
152
- This is a required param for estimators, as there is no way to infer these
153
- columns. If this parameter is not specified, then object is fitted without
154
- labels (like a transformer).
155
-
156
- output_cols: Optional[Union[str, List[str]]]
157
- A string or list of strings representing column names that will store the
158
- output of predict and transform operations. The length of output_cols must
159
- match the expected number of output columns from the specific estimator or
160
- transformer class used.
161
- If this parameter is not specified, output column names are derived by
162
- adding an OUTPUT_ prefix to the label column names. These inferred output
163
- column names work for estimator's predict() method, but output_cols must
164
- be set explicitly for transformers.
165
-
166
- sample_weight_col: Optional[str]
167
- A string representing the column name containing the sample weights.
168
- This argument is only required when working with weighted datasets.
169
-
170
- passthrough_cols: Optional[Union[str, List[str]]]
171
- A string or a list of strings indicating column names to be excluded from any
172
- operations (such as train, transform, or inference). These specified column(s)
173
- will remain untouched throughout the process. This option is helpful in scenarios
174
- requiring automatic input_cols inference, but need to avoid using specific
175
- columns, like index columns, during training or inference.
176
-
177
- drop_input_cols: Optional[bool], default=False
178
- If set, the response of predict(), transform() methods will not contain input columns.
179
189
  """
180
190
 
181
191
  def __init__( # type: ignore[no-untyped-def]
@@ -211,7 +221,7 @@ class SVC(BaseTransformer):
211
221
  self.set_passthrough_cols(passthrough_cols)
212
222
  self.set_drop_input_cols(drop_input_cols)
213
223
  self.set_sample_weight_col(sample_weight_col)
214
- deps = set(SklearnWrapperProvider().dependencies)
224
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
215
225
 
216
226
  self._deps = list(deps)
217
227
 
@@ -234,13 +244,14 @@ class SVC(BaseTransformer):
234
244
  args=init_args,
235
245
  klass=sklearn.svm.SVC
236
246
  )
237
- self._sklearn_object = sklearn.svm.SVC(
247
+ self._sklearn_object: Any = sklearn.svm.SVC(
238
248
  **cleaned_up_init_args,
239
249
  )
240
250
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
241
251
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
242
252
  self._snowpark_cols: Optional[List[str]] = self.input_cols
243
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
253
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
254
+ self._autogenerated = True
244
255
 
245
256
  def _get_rand_id(self) -> str:
246
257
  """
@@ -296,54 +307,48 @@ class SVC(BaseTransformer):
296
307
  self
297
308
  """
298
309
  self._infer_input_output_cols(dataset)
299
- if isinstance(dataset, pd.DataFrame):
300
- assert self._sklearn_object is not None # keep mypy happy
301
- self._sklearn_object = self._handlers.fit_pandas(
302
- dataset,
303
- self._sklearn_object,
304
- self.input_cols,
305
- self.label_cols,
306
- self.sample_weight_col
307
- )
308
- elif isinstance(dataset, DataFrame):
309
- self._fit_snowpark(dataset)
310
- else:
311
- raise TypeError(
312
- f"Unexpected dataset type: {type(dataset)}."
313
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
314
- )
310
+ if isinstance(dataset, DataFrame):
311
+ session = dataset._session
312
+ assert session is not None # keep mypy happy
313
+ # Validate that key package version in user workspace are supported in snowflake conda channel
314
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
315
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
316
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
317
+
318
+ # Specify input columns so column pruning will be enforced
319
+ selected_cols = self._get_active_columns()
320
+ if len(selected_cols) > 0:
321
+ dataset = dataset.select(selected_cols)
322
+
323
+ self._snowpark_cols = dataset.select(self.input_cols).columns
324
+
325
+ # If we are already in a stored procedure, no need to kick off another one.
326
+ if SNOWML_SPROC_ENV in os.environ:
327
+ statement_params = telemetry.get_function_usage_statement_params(
328
+ project=_PROJECT,
329
+ subproject=_SUBPROJECT,
330
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
331
+ api_calls=[Session.call],
332
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
333
+ )
334
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
335
+ pd_df.columns = dataset.columns
336
+ dataset = pd_df
337
+
338
+ model_trainer = ModelTrainerBuilder.build(
339
+ estimator=self._sklearn_object,
340
+ dataset=dataset,
341
+ input_cols=self.input_cols,
342
+ label_cols=self.label_cols,
343
+ sample_weight_col=self.sample_weight_col,
344
+ autogenerated=self._autogenerated,
345
+ subproject=_SUBPROJECT
346
+ )
347
+ self._sklearn_object = model_trainer.train()
315
348
  self._is_fitted = True
316
349
  self._get_model_signatures(dataset)
317
350
  return self
318
351
 
319
- def _fit_snowpark(self, dataset: DataFrame) -> None:
320
- session = dataset._session
321
- assert session is not None # keep mypy happy
322
- # Validate that key package version in user workspace are supported in snowflake conda channel
323
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
324
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
325
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
326
-
327
- # Specify input columns so column pruning will be enforced
328
- selected_cols = self._get_active_columns()
329
- if len(selected_cols) > 0:
330
- dataset = dataset.select(selected_cols)
331
-
332
- estimator = self._sklearn_object
333
- assert estimator is not None # Keep mypy happy
334
-
335
- self._snowpark_cols = dataset.select(self.input_cols).columns
336
-
337
- self._sklearn_object = self._handlers.fit_snowpark(
338
- dataset,
339
- session,
340
- estimator,
341
- ["snowflake-snowpark-python"] + self._get_dependencies(),
342
- self.input_cols,
343
- self.label_cols,
344
- self.sample_weight_col,
345
- )
346
-
347
352
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
348
353
  if self._drop_input_cols:
349
354
  return []
@@ -531,11 +536,6 @@ class SVC(BaseTransformer):
531
536
  subproject=_SUBPROJECT,
532
537
  custom_tags=dict([("autogen", True)]),
533
538
  )
534
- @telemetry.add_stmt_params_to_df(
535
- project=_PROJECT,
536
- subproject=_SUBPROJECT,
537
- custom_tags=dict([("autogen", True)]),
538
- )
539
539
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
540
540
  """Perform classification on samples in X
541
541
  For more details on this function, see [sklearn.svm.SVC.predict]
@@ -589,11 +589,6 @@ class SVC(BaseTransformer):
589
589
  subproject=_SUBPROJECT,
590
590
  custom_tags=dict([("autogen", True)]),
591
591
  )
592
- @telemetry.add_stmt_params_to_df(
593
- project=_PROJECT,
594
- subproject=_SUBPROJECT,
595
- custom_tags=dict([("autogen", True)]),
596
- )
597
592
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
598
593
  """Method not supported for this class.
599
594
 
@@ -650,7 +645,8 @@ class SVC(BaseTransformer):
650
645
  if False:
651
646
  self.fit(dataset)
652
647
  assert self._sklearn_object is not None
653
- return self._sklearn_object.labels_
648
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
649
+ return labels
654
650
  else:
655
651
  raise NotImplementedError
656
652
 
@@ -686,6 +682,7 @@ class SVC(BaseTransformer):
686
682
  output_cols = []
687
683
 
688
684
  # Make sure column names are valid snowflake identifiers.
685
+ assert output_cols is not None # Make MyPy happy
689
686
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
690
687
 
691
688
  return rv
@@ -696,11 +693,6 @@ class SVC(BaseTransformer):
696
693
  subproject=_SUBPROJECT,
697
694
  custom_tags=dict([("autogen", True)]),
698
695
  )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
696
  def predict_proba(
705
697
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
706
698
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -743,11 +735,6 @@ class SVC(BaseTransformer):
743
735
  subproject=_SUBPROJECT,
744
736
  custom_tags=dict([("autogen", True)]),
745
737
  )
746
- @telemetry.add_stmt_params_to_df(
747
- project=_PROJECT,
748
- subproject=_SUBPROJECT,
749
- custom_tags=dict([("autogen", True)]),
750
- )
751
738
  def predict_log_proba(
752
739
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
753
740
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -786,16 +773,6 @@ class SVC(BaseTransformer):
786
773
  return output_df
787
774
 
788
775
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
789
- @telemetry.send_api_usage_telemetry(
790
- project=_PROJECT,
791
- subproject=_SUBPROJECT,
792
- custom_tags=dict([("autogen", True)]),
793
- )
794
- @telemetry.add_stmt_params_to_df(
795
- project=_PROJECT,
796
- subproject=_SUBPROJECT,
797
- custom_tags=dict([("autogen", True)]),
798
- )
799
776
  def decision_function(
800
777
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
801
778
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -898,11 +875,6 @@ class SVC(BaseTransformer):
898
875
  subproject=_SUBPROJECT,
899
876
  custom_tags=dict([("autogen", True)]),
900
877
  )
901
- @telemetry.add_stmt_params_to_df(
902
- project=_PROJECT,
903
- subproject=_SUBPROJECT,
904
- custom_tags=dict([("autogen", True)]),
905
- )
906
878
  def kneighbors(
907
879
  self,
908
880
  dataset: Union[DataFrame, pd.DataFrame],
@@ -962,9 +934,9 @@ class SVC(BaseTransformer):
962
934
  # For classifier, the type of predict is the same as the type of label
963
935
  if self._sklearn_object._estimator_type == 'classifier':
964
936
  # label columns is the desired type for output
965
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
937
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
966
938
  # rename the output columns
967
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
939
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
968
940
  self._model_signature_dict["predict"] = ModelSignature(inputs,
969
941
  ([] if self._drop_input_cols else inputs)
970
942
  + outputs)