snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRFClassifier(BaseTransformer):
|
56
57
|
r"""scikit-learn API for XGBoost random forest classification
|
57
58
|
For more details on this class, see [xgboost.XGBRFClassifier]
|
@@ -60,7 +61,51 @@ class XGBRFClassifier(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of trees in random forest to fit.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,42 +312,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
275
|
-
parameters are considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
298
|
-
A string or a list of strings indicating column names to be excluded from any
|
299
|
-
operations (such as train, transform, or inference). These specified column(s)
|
300
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
301
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
302
|
-
columns, like index columns, during training or inference.
|
303
|
-
|
304
|
-
drop_input_cols: Optional[bool], default=False
|
305
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
306
315
|
"""
|
307
316
|
|
308
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -328,7 +337,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
328
337
|
self.set_passthrough_cols(passthrough_cols)
|
329
338
|
self.set_drop_input_cols(drop_input_cols)
|
330
339
|
self.set_sample_weight_col(sample_weight_col)
|
331
|
-
deps = set(
|
340
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
332
341
|
|
333
342
|
self._deps = list(deps)
|
334
343
|
|
@@ -340,14 +349,15 @@ class XGBRFClassifier(BaseTransformer):
|
|
340
349
|
args=init_args,
|
341
350
|
klass=xgboost.XGBRFClassifier
|
342
351
|
)
|
343
|
-
self._sklearn_object = xgboost.XGBRFClassifier(
|
352
|
+
self._sklearn_object: Any = xgboost.XGBRFClassifier(
|
344
353
|
**cleaned_up_init_args,
|
345
354
|
**kwargs,
|
346
355
|
)
|
347
356
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
348
357
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
349
358
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
350
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
359
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
360
|
+
self._autogenerated = True
|
351
361
|
|
352
362
|
def _get_rand_id(self) -> str:
|
353
363
|
"""
|
@@ -403,54 +413,48 @@ class XGBRFClassifier(BaseTransformer):
|
|
403
413
|
self
|
404
414
|
"""
|
405
415
|
self._infer_input_output_cols(dataset)
|
406
|
-
if isinstance(dataset,
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
self.
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
416
|
+
if isinstance(dataset, DataFrame):
|
417
|
+
session = dataset._session
|
418
|
+
assert session is not None # keep mypy happy
|
419
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
420
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
421
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
422
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
423
|
+
|
424
|
+
# Specify input columns so column pruning will be enforced
|
425
|
+
selected_cols = self._get_active_columns()
|
426
|
+
if len(selected_cols) > 0:
|
427
|
+
dataset = dataset.select(selected_cols)
|
428
|
+
|
429
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
430
|
+
|
431
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
432
|
+
if SNOWML_SPROC_ENV in os.environ:
|
433
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
434
|
+
project=_PROJECT,
|
435
|
+
subproject=_SUBPROJECT,
|
436
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFClassifier.__class__.__name__),
|
437
|
+
api_calls=[Session.call],
|
438
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
439
|
+
)
|
440
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
441
|
+
pd_df.columns = dataset.columns
|
442
|
+
dataset = pd_df
|
443
|
+
|
444
|
+
model_trainer = ModelTrainerBuilder.build(
|
445
|
+
estimator=self._sklearn_object,
|
446
|
+
dataset=dataset,
|
447
|
+
input_cols=self.input_cols,
|
448
|
+
label_cols=self.label_cols,
|
449
|
+
sample_weight_col=self.sample_weight_col,
|
450
|
+
autogenerated=self._autogenerated,
|
451
|
+
subproject=_SUBPROJECT
|
452
|
+
)
|
453
|
+
self._sklearn_object = model_trainer.train()
|
422
454
|
self._is_fitted = True
|
423
455
|
self._get_model_signatures(dataset)
|
424
456
|
return self
|
425
457
|
|
426
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
427
|
-
session = dataset._session
|
428
|
-
assert session is not None # keep mypy happy
|
429
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
430
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
431
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
432
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
433
|
-
|
434
|
-
# Specify input columns so column pruning will be enforced
|
435
|
-
selected_cols = self._get_active_columns()
|
436
|
-
if len(selected_cols) > 0:
|
437
|
-
dataset = dataset.select(selected_cols)
|
438
|
-
|
439
|
-
estimator = self._sklearn_object
|
440
|
-
assert estimator is not None # Keep mypy happy
|
441
|
-
|
442
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
443
|
-
|
444
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
445
|
-
dataset,
|
446
|
-
session,
|
447
|
-
estimator,
|
448
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
449
|
-
self.input_cols,
|
450
|
-
self.label_cols,
|
451
|
-
self.sample_weight_col,
|
452
|
-
)
|
453
|
-
|
454
458
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
455
459
|
if self._drop_input_cols:
|
456
460
|
return []
|
@@ -638,11 +642,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
638
642
|
subproject=_SUBPROJECT,
|
639
643
|
custom_tags=dict([("autogen", True)]),
|
640
644
|
)
|
641
|
-
@telemetry.add_stmt_params_to_df(
|
642
|
-
project=_PROJECT,
|
643
|
-
subproject=_SUBPROJECT,
|
644
|
-
custom_tags=dict([("autogen", True)]),
|
645
|
-
)
|
646
645
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
647
646
|
"""Predict with `X`
|
648
647
|
For more details on this function, see [xgboost.XGBRFClassifier.predict]
|
@@ -696,11 +695,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
696
695
|
subproject=_SUBPROJECT,
|
697
696
|
custom_tags=dict([("autogen", True)]),
|
698
697
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
698
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
705
699
|
"""Method not supported for this class.
|
706
700
|
|
@@ -757,7 +751,8 @@ class XGBRFClassifier(BaseTransformer):
|
|
757
751
|
if False:
|
758
752
|
self.fit(dataset)
|
759
753
|
assert self._sklearn_object is not None
|
760
|
-
|
754
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
755
|
+
return labels
|
761
756
|
else:
|
762
757
|
raise NotImplementedError
|
763
758
|
|
@@ -793,6 +788,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
793
788
|
output_cols = []
|
794
789
|
|
795
790
|
# Make sure column names are valid snowflake identifiers.
|
791
|
+
assert output_cols is not None # Make MyPy happy
|
796
792
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
797
793
|
|
798
794
|
return rv
|
@@ -803,11 +799,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
803
799
|
subproject=_SUBPROJECT,
|
804
800
|
custom_tags=dict([("autogen", True)]),
|
805
801
|
)
|
806
|
-
@telemetry.add_stmt_params_to_df(
|
807
|
-
project=_PROJECT,
|
808
|
-
subproject=_SUBPROJECT,
|
809
|
-
custom_tags=dict([("autogen", True)]),
|
810
|
-
)
|
811
802
|
def predict_proba(
|
812
803
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
813
804
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -850,11 +841,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
850
841
|
subproject=_SUBPROJECT,
|
851
842
|
custom_tags=dict([("autogen", True)]),
|
852
843
|
)
|
853
|
-
@telemetry.add_stmt_params_to_df(
|
854
|
-
project=_PROJECT,
|
855
|
-
subproject=_SUBPROJECT,
|
856
|
-
custom_tags=dict([("autogen", True)]),
|
857
|
-
)
|
858
844
|
def predict_log_proba(
|
859
845
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
860
846
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -893,16 +879,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
893
879
|
return output_df
|
894
880
|
|
895
881
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
896
|
-
@telemetry.send_api_usage_telemetry(
|
897
|
-
project=_PROJECT,
|
898
|
-
subproject=_SUBPROJECT,
|
899
|
-
custom_tags=dict([("autogen", True)]),
|
900
|
-
)
|
901
|
-
@telemetry.add_stmt_params_to_df(
|
902
|
-
project=_PROJECT,
|
903
|
-
subproject=_SUBPROJECT,
|
904
|
-
custom_tags=dict([("autogen", True)]),
|
905
|
-
)
|
906
882
|
def decision_function(
|
907
883
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
908
884
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -1003,11 +979,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
1003
979
|
subproject=_SUBPROJECT,
|
1004
980
|
custom_tags=dict([("autogen", True)]),
|
1005
981
|
)
|
1006
|
-
@telemetry.add_stmt_params_to_df(
|
1007
|
-
project=_PROJECT,
|
1008
|
-
subproject=_SUBPROJECT,
|
1009
|
-
custom_tags=dict([("autogen", True)]),
|
1010
|
-
)
|
1011
982
|
def kneighbors(
|
1012
983
|
self,
|
1013
984
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1067,9 +1038,9 @@ class XGBRFClassifier(BaseTransformer):
|
|
1067
1038
|
# For classifier, the type of predict is the same as the type of label
|
1068
1039
|
if self._sklearn_object._estimator_type == 'classifier':
|
1069
1040
|
# label columns is the desired type for output
|
1070
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1041
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1071
1042
|
# rename the output columns
|
1072
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1043
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1073
1044
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1074
1045
|
([] if self._drop_input_cols else inputs)
|
1075
1046
|
+ outputs)
|