snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LinearRegression(BaseTransformer):
57
58
  r"""Ordinary least squares Linear Regression
58
59
  For more details on this class, see [sklearn.linear_model.LinearRegression]
@@ -60,61 +61,70 @@ class LinearRegression(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- fit_intercept: bool, default=True
64
- Whether to calculate the intercept for this model. If set
65
- to False, no intercept will be used in calculations
66
- (i.e. data is expected to be centered).
67
-
68
- copy_X: bool, default=True
69
- If True, X will be copied; else, it may be overwritten.
70
-
71
- n_jobs: int, default=None
72
- The number of jobs to use for the computation. This will only provide
73
- speedup in case of sufficiently large problems, that is if firstly
74
- `n_targets > 1` and secondly `X` is sparse or if `positive` is set
75
- to `True`. ``None`` means 1 unless in a
76
- :obj:`joblib.parallel_backend` context. ``-1`` means using all
77
- processors. See :term:`Glossary <n_jobs>` for more details.
78
-
79
- positive: bool, default=False
80
- When set to ``True``, forces the coefficients to be positive. This
81
- option is only supported for dense arrays.
82
64
 
83
65
  input_cols: Optional[Union[str, List[str]]]
84
66
  A string or list of strings representing column names that contain features.
85
67
  If this parameter is not specified, all columns in the input DataFrame except
86
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
87
- parameters are considered input columns.
88
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
89
72
  label_cols: Optional[Union[str, List[str]]]
90
73
  A string or list of strings representing column names that contain labels.
91
- This is a required param for estimators, as there is no way to infer these
92
- columns. If this parameter is not specified, then object is fitted without
93
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
94
76
 
95
77
  output_cols: Optional[Union[str, List[str]]]
96
78
  A string or list of strings representing column names that will store the
97
79
  output of predict and transform operations. The length of output_cols must
98
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
99
81
  transformer class used.
100
- If this parameter is not specified, output column names are derived by
101
- adding an OUTPUT_ prefix to the label column names. These inferred output
102
- column names work for estimator's predict() method, but output_cols must
103
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
104
91
 
105
92
  sample_weight_col: Optional[str]
106
93
  A string representing the column name containing the sample weights.
107
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
108
97
 
109
98
  passthrough_cols: Optional[Union[str, List[str]]]
110
99
  A string or a list of strings indicating column names to be excluded from any
111
100
  operations (such as train, transform, or inference). These specified column(s)
112
101
  will remain untouched throughout the process. This option is helpful in scenarios
113
102
  requiring automatic input_cols inference, but need to avoid using specific
114
- columns, like index columns, during training or inference.
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
115
105
 
116
106
  drop_input_cols: Optional[bool], default=False
117
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ fit_intercept: bool, default=True
110
+ Whether to calculate the intercept for this model. If set
111
+ to False, no intercept will be used in calculations
112
+ (i.e. data is expected to be centered).
113
+
114
+ copy_X: bool, default=True
115
+ If True, X will be copied; else, it may be overwritten.
116
+
117
+ n_jobs: int, default=None
118
+ The number of jobs to use for the computation. This will only provide
119
+ speedup in case of sufficiently large problems, that is if firstly
120
+ `n_targets > 1` and secondly `X` is sparse or if `positive` is set
121
+ to `True`. ``None`` means 1 unless in a
122
+ :obj:`joblib.parallel_backend` context. ``-1`` means using all
123
+ processors. See :term:`Glossary <n_jobs>` for more details.
124
+
125
+ positive: bool, default=False
126
+ When set to ``True``, forces the coefficients to be positive. This
127
+ option is only supported for dense arrays.
118
128
  """
119
129
 
120
130
  def __init__( # type: ignore[no-untyped-def]
@@ -139,7 +149,7 @@ class LinearRegression(BaseTransformer):
139
149
  self.set_passthrough_cols(passthrough_cols)
140
150
  self.set_drop_input_cols(drop_input_cols)
141
151
  self.set_sample_weight_col(sample_weight_col)
142
- deps = set(SklearnWrapperProvider().dependencies)
152
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
143
153
 
144
154
  self._deps = list(deps)
145
155
 
@@ -151,13 +161,14 @@ class LinearRegression(BaseTransformer):
151
161
  args=init_args,
152
162
  klass=sklearn.linear_model.LinearRegression
153
163
  )
154
- self._sklearn_object = sklearn.linear_model.LinearRegression(
164
+ self._sklearn_object: Any = sklearn.linear_model.LinearRegression(
155
165
  **cleaned_up_init_args,
156
166
  )
157
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
158
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
159
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
160
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
170
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
+ self._autogenerated = True
161
172
 
162
173
  def _get_rand_id(self) -> str:
163
174
  """
@@ -213,54 +224,48 @@ class LinearRegression(BaseTransformer):
213
224
  self
214
225
  """
215
226
  self._infer_input_output_cols(dataset)
216
- if isinstance(dataset, pd.DataFrame):
217
- assert self._sklearn_object is not None # keep mypy happy
218
- self._sklearn_object = self._handlers.fit_pandas(
219
- dataset,
220
- self._sklearn_object,
221
- self.input_cols,
222
- self.label_cols,
223
- self.sample_weight_col
224
- )
225
- elif isinstance(dataset, DataFrame):
226
- self._fit_snowpark(dataset)
227
- else:
228
- raise TypeError(
229
- f"Unexpected dataset type: {type(dataset)}."
230
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
231
- )
227
+ if isinstance(dataset, DataFrame):
228
+ session = dataset._session
229
+ assert session is not None # keep mypy happy
230
+ # Validate that key package version in user workspace are supported in snowflake conda channel
231
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
232
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
233
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
234
+
235
+ # Specify input columns so column pruning will be enforced
236
+ selected_cols = self._get_active_columns()
237
+ if len(selected_cols) > 0:
238
+ dataset = dataset.select(selected_cols)
239
+
240
+ self._snowpark_cols = dataset.select(self.input_cols).columns
241
+
242
+ # If we are already in a stored procedure, no need to kick off another one.
243
+ if SNOWML_SPROC_ENV in os.environ:
244
+ statement_params = telemetry.get_function_usage_statement_params(
245
+ project=_PROJECT,
246
+ subproject=_SUBPROJECT,
247
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearRegression.__class__.__name__),
248
+ api_calls=[Session.call],
249
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
250
+ )
251
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
252
+ pd_df.columns = dataset.columns
253
+ dataset = pd_df
254
+
255
+ model_trainer = ModelTrainerBuilder.build(
256
+ estimator=self._sklearn_object,
257
+ dataset=dataset,
258
+ input_cols=self.input_cols,
259
+ label_cols=self.label_cols,
260
+ sample_weight_col=self.sample_weight_col,
261
+ autogenerated=self._autogenerated,
262
+ subproject=_SUBPROJECT
263
+ )
264
+ self._sklearn_object = model_trainer.train()
232
265
  self._is_fitted = True
233
266
  self._get_model_signatures(dataset)
234
267
  return self
235
268
 
236
- def _fit_snowpark(self, dataset: DataFrame) -> None:
237
- session = dataset._session
238
- assert session is not None # keep mypy happy
239
- # Validate that key package version in user workspace are supported in snowflake conda channel
240
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
241
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
242
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
243
-
244
- # Specify input columns so column pruning will be enforced
245
- selected_cols = self._get_active_columns()
246
- if len(selected_cols) > 0:
247
- dataset = dataset.select(selected_cols)
248
-
249
- estimator = self._sklearn_object
250
- assert estimator is not None # Keep mypy happy
251
-
252
- self._snowpark_cols = dataset.select(self.input_cols).columns
253
-
254
- self._sklearn_object = self._handlers.fit_snowpark(
255
- dataset,
256
- session,
257
- estimator,
258
- ["snowflake-snowpark-python"] + self._get_dependencies(),
259
- self.input_cols,
260
- self.label_cols,
261
- self.sample_weight_col,
262
- )
263
-
264
269
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
265
270
  if self._drop_input_cols:
266
271
  return []
@@ -448,11 +453,6 @@ class LinearRegression(BaseTransformer):
448
453
  subproject=_SUBPROJECT,
449
454
  custom_tags=dict([("autogen", True)]),
450
455
  )
451
- @telemetry.add_stmt_params_to_df(
452
- project=_PROJECT,
453
- subproject=_SUBPROJECT,
454
- custom_tags=dict([("autogen", True)]),
455
- )
456
456
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
457
457
  """Predict using the linear model
458
458
  For more details on this function, see [sklearn.linear_model.LinearRegression.predict]
@@ -506,11 +506,6 @@ class LinearRegression(BaseTransformer):
506
506
  subproject=_SUBPROJECT,
507
507
  custom_tags=dict([("autogen", True)]),
508
508
  )
509
- @telemetry.add_stmt_params_to_df(
510
- project=_PROJECT,
511
- subproject=_SUBPROJECT,
512
- custom_tags=dict([("autogen", True)]),
513
- )
514
509
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
515
510
  """Method not supported for this class.
516
511
 
@@ -567,7 +562,8 @@ class LinearRegression(BaseTransformer):
567
562
  if False:
568
563
  self.fit(dataset)
569
564
  assert self._sklearn_object is not None
570
- return self._sklearn_object.labels_
565
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
566
+ return labels
571
567
  else:
572
568
  raise NotImplementedError
573
569
 
@@ -603,6 +599,7 @@ class LinearRegression(BaseTransformer):
603
599
  output_cols = []
604
600
 
605
601
  # Make sure column names are valid snowflake identifiers.
602
+ assert output_cols is not None # Make MyPy happy
606
603
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
607
604
 
608
605
  return rv
@@ -613,11 +610,6 @@ class LinearRegression(BaseTransformer):
613
610
  subproject=_SUBPROJECT,
614
611
  custom_tags=dict([("autogen", True)]),
615
612
  )
616
- @telemetry.add_stmt_params_to_df(
617
- project=_PROJECT,
618
- subproject=_SUBPROJECT,
619
- custom_tags=dict([("autogen", True)]),
620
- )
621
613
  def predict_proba(
622
614
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
623
615
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -658,11 +650,6 @@ class LinearRegression(BaseTransformer):
658
650
  subproject=_SUBPROJECT,
659
651
  custom_tags=dict([("autogen", True)]),
660
652
  )
661
- @telemetry.add_stmt_params_to_df(
662
- project=_PROJECT,
663
- subproject=_SUBPROJECT,
664
- custom_tags=dict([("autogen", True)]),
665
- )
666
653
  def predict_log_proba(
667
654
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
668
655
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -699,16 +686,6 @@ class LinearRegression(BaseTransformer):
699
686
  return output_df
700
687
 
701
688
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
702
- @telemetry.send_api_usage_telemetry(
703
- project=_PROJECT,
704
- subproject=_SUBPROJECT,
705
- custom_tags=dict([("autogen", True)]),
706
- )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
689
  def decision_function(
713
690
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
714
691
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -809,11 +786,6 @@ class LinearRegression(BaseTransformer):
809
786
  subproject=_SUBPROJECT,
810
787
  custom_tags=dict([("autogen", True)]),
811
788
  )
812
- @telemetry.add_stmt_params_to_df(
813
- project=_PROJECT,
814
- subproject=_SUBPROJECT,
815
- custom_tags=dict([("autogen", True)]),
816
- )
817
789
  def kneighbors(
818
790
  self,
819
791
  dataset: Union[DataFrame, pd.DataFrame],
@@ -873,9 +845,9 @@ class LinearRegression(BaseTransformer):
873
845
  # For classifier, the type of predict is the same as the type of label
874
846
  if self._sklearn_object._estimator_type == 'classifier':
875
847
  # label columns is the desired type for output
876
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
848
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
877
849
  # rename the output columns
878
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
850
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
879
851
  self._model_signature_dict["predict"] = ModelSignature(inputs,
880
852
  ([] if self._drop_input_cols else inputs)
881
853
  + outputs)