snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearRegression(BaseTransformer):
|
57
58
|
r"""Ordinary least squares Linear Regression
|
58
59
|
For more details on this class, see [sklearn.linear_model.LinearRegression]
|
@@ -60,61 +61,70 @@ class LinearRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
fit_intercept: bool, default=True
|
64
|
-
Whether to calculate the intercept for this model. If set
|
65
|
-
to False, no intercept will be used in calculations
|
66
|
-
(i.e. data is expected to be centered).
|
67
|
-
|
68
|
-
copy_X: bool, default=True
|
69
|
-
If True, X will be copied; else, it may be overwritten.
|
70
|
-
|
71
|
-
n_jobs: int, default=None
|
72
|
-
The number of jobs to use for the computation. This will only provide
|
73
|
-
speedup in case of sufficiently large problems, that is if firstly
|
74
|
-
`n_targets > 1` and secondly `X` is sparse or if `positive` is set
|
75
|
-
to `True`. ``None`` means 1 unless in a
|
76
|
-
:obj:`joblib.parallel_backend` context. ``-1`` means using all
|
77
|
-
processors. See :term:`Glossary <n_jobs>` for more details.
|
78
|
-
|
79
|
-
positive: bool, default=False
|
80
|
-
When set to ``True``, forces the coefficients to be positive. This
|
81
|
-
option is only supported for dense arrays.
|
82
64
|
|
83
65
|
input_cols: Optional[Union[str, List[str]]]
|
84
66
|
A string or list of strings representing column names that contain features.
|
85
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
86
68
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
87
|
-
parameters are considered input columns.
|
88
|
-
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
89
72
|
label_cols: Optional[Union[str, List[str]]]
|
90
73
|
A string or list of strings representing column names that contain labels.
|
91
|
-
|
92
|
-
|
93
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
94
76
|
|
95
77
|
output_cols: Optional[Union[str, List[str]]]
|
96
78
|
A string or list of strings representing column names that will store the
|
97
79
|
output of predict and transform operations. The length of output_cols must
|
98
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
99
81
|
transformer class used.
|
100
|
-
If this parameter
|
101
|
-
|
102
|
-
|
103
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
104
91
|
|
105
92
|
sample_weight_col: Optional[str]
|
106
93
|
A string representing the column name containing the sample weights.
|
107
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
108
97
|
|
109
98
|
passthrough_cols: Optional[Union[str, List[str]]]
|
110
99
|
A string or a list of strings indicating column names to be excluded from any
|
111
100
|
operations (such as train, transform, or inference). These specified column(s)
|
112
101
|
will remain untouched throughout the process. This option is helpful in scenarios
|
113
102
|
requiring automatic input_cols inference, but need to avoid using specific
|
114
|
-
columns, like index columns, during training or inference.
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
115
105
|
|
116
106
|
drop_input_cols: Optional[bool], default=False
|
117
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
fit_intercept: bool, default=True
|
110
|
+
Whether to calculate the intercept for this model. If set
|
111
|
+
to False, no intercept will be used in calculations
|
112
|
+
(i.e. data is expected to be centered).
|
113
|
+
|
114
|
+
copy_X: bool, default=True
|
115
|
+
If True, X will be copied; else, it may be overwritten.
|
116
|
+
|
117
|
+
n_jobs: int, default=None
|
118
|
+
The number of jobs to use for the computation. This will only provide
|
119
|
+
speedup in case of sufficiently large problems, that is if firstly
|
120
|
+
`n_targets > 1` and secondly `X` is sparse or if `positive` is set
|
121
|
+
to `True`. ``None`` means 1 unless in a
|
122
|
+
:obj:`joblib.parallel_backend` context. ``-1`` means using all
|
123
|
+
processors. See :term:`Glossary <n_jobs>` for more details.
|
124
|
+
|
125
|
+
positive: bool, default=False
|
126
|
+
When set to ``True``, forces the coefficients to be positive. This
|
127
|
+
option is only supported for dense arrays.
|
118
128
|
"""
|
119
129
|
|
120
130
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -139,7 +149,7 @@ class LinearRegression(BaseTransformer):
|
|
139
149
|
self.set_passthrough_cols(passthrough_cols)
|
140
150
|
self.set_drop_input_cols(drop_input_cols)
|
141
151
|
self.set_sample_weight_col(sample_weight_col)
|
142
|
-
deps = set(
|
152
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
143
153
|
|
144
154
|
self._deps = list(deps)
|
145
155
|
|
@@ -151,13 +161,14 @@ class LinearRegression(BaseTransformer):
|
|
151
161
|
args=init_args,
|
152
162
|
klass=sklearn.linear_model.LinearRegression
|
153
163
|
)
|
154
|
-
self._sklearn_object = sklearn.linear_model.LinearRegression(
|
164
|
+
self._sklearn_object: Any = sklearn.linear_model.LinearRegression(
|
155
165
|
**cleaned_up_init_args,
|
156
166
|
)
|
157
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
158
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
159
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
160
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
170
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
|
+
self._autogenerated = True
|
161
172
|
|
162
173
|
def _get_rand_id(self) -> str:
|
163
174
|
"""
|
@@ -213,54 +224,48 @@ class LinearRegression(BaseTransformer):
|
|
213
224
|
self
|
214
225
|
"""
|
215
226
|
self._infer_input_output_cols(dataset)
|
216
|
-
if isinstance(dataset,
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
self.
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
227
|
+
if isinstance(dataset, DataFrame):
|
228
|
+
session = dataset._session
|
229
|
+
assert session is not None # keep mypy happy
|
230
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
+
|
235
|
+
# Specify input columns so column pruning will be enforced
|
236
|
+
selected_cols = self._get_active_columns()
|
237
|
+
if len(selected_cols) > 0:
|
238
|
+
dataset = dataset.select(selected_cols)
|
239
|
+
|
240
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
+
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
243
|
+
if SNOWML_SPROC_ENV in os.environ:
|
244
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
245
|
+
project=_PROJECT,
|
246
|
+
subproject=_SUBPROJECT,
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearRegression.__class__.__name__),
|
248
|
+
api_calls=[Session.call],
|
249
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
250
|
+
)
|
251
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
252
|
+
pd_df.columns = dataset.columns
|
253
|
+
dataset = pd_df
|
254
|
+
|
255
|
+
model_trainer = ModelTrainerBuilder.build(
|
256
|
+
estimator=self._sklearn_object,
|
257
|
+
dataset=dataset,
|
258
|
+
input_cols=self.input_cols,
|
259
|
+
label_cols=self.label_cols,
|
260
|
+
sample_weight_col=self.sample_weight_col,
|
261
|
+
autogenerated=self._autogenerated,
|
262
|
+
subproject=_SUBPROJECT
|
263
|
+
)
|
264
|
+
self._sklearn_object = model_trainer.train()
|
232
265
|
self._is_fitted = True
|
233
266
|
self._get_model_signatures(dataset)
|
234
267
|
return self
|
235
268
|
|
236
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
237
|
-
session = dataset._session
|
238
|
-
assert session is not None # keep mypy happy
|
239
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
-
|
244
|
-
# Specify input columns so column pruning will be enforced
|
245
|
-
selected_cols = self._get_active_columns()
|
246
|
-
if len(selected_cols) > 0:
|
247
|
-
dataset = dataset.select(selected_cols)
|
248
|
-
|
249
|
-
estimator = self._sklearn_object
|
250
|
-
assert estimator is not None # Keep mypy happy
|
251
|
-
|
252
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
-
|
254
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
255
|
-
dataset,
|
256
|
-
session,
|
257
|
-
estimator,
|
258
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
259
|
-
self.input_cols,
|
260
|
-
self.label_cols,
|
261
|
-
self.sample_weight_col,
|
262
|
-
)
|
263
|
-
|
264
269
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
265
270
|
if self._drop_input_cols:
|
266
271
|
return []
|
@@ -448,11 +453,6 @@ class LinearRegression(BaseTransformer):
|
|
448
453
|
subproject=_SUBPROJECT,
|
449
454
|
custom_tags=dict([("autogen", True)]),
|
450
455
|
)
|
451
|
-
@telemetry.add_stmt_params_to_df(
|
452
|
-
project=_PROJECT,
|
453
|
-
subproject=_SUBPROJECT,
|
454
|
-
custom_tags=dict([("autogen", True)]),
|
455
|
-
)
|
456
456
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
457
457
|
"""Predict using the linear model
|
458
458
|
For more details on this function, see [sklearn.linear_model.LinearRegression.predict]
|
@@ -506,11 +506,6 @@ class LinearRegression(BaseTransformer):
|
|
506
506
|
subproject=_SUBPROJECT,
|
507
507
|
custom_tags=dict([("autogen", True)]),
|
508
508
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
510
|
"""Method not supported for this class.
|
516
511
|
|
@@ -567,7 +562,8 @@ class LinearRegression(BaseTransformer):
|
|
567
562
|
if False:
|
568
563
|
self.fit(dataset)
|
569
564
|
assert self._sklearn_object is not None
|
570
|
-
|
565
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
566
|
+
return labels
|
571
567
|
else:
|
572
568
|
raise NotImplementedError
|
573
569
|
|
@@ -603,6 +599,7 @@ class LinearRegression(BaseTransformer):
|
|
603
599
|
output_cols = []
|
604
600
|
|
605
601
|
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
606
603
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
604
|
|
608
605
|
return rv
|
@@ -613,11 +610,6 @@ class LinearRegression(BaseTransformer):
|
|
613
610
|
subproject=_SUBPROJECT,
|
614
611
|
custom_tags=dict([("autogen", True)]),
|
615
612
|
)
|
616
|
-
@telemetry.add_stmt_params_to_df(
|
617
|
-
project=_PROJECT,
|
618
|
-
subproject=_SUBPROJECT,
|
619
|
-
custom_tags=dict([("autogen", True)]),
|
620
|
-
)
|
621
613
|
def predict_proba(
|
622
614
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
623
615
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -658,11 +650,6 @@ class LinearRegression(BaseTransformer):
|
|
658
650
|
subproject=_SUBPROJECT,
|
659
651
|
custom_tags=dict([("autogen", True)]),
|
660
652
|
)
|
661
|
-
@telemetry.add_stmt_params_to_df(
|
662
|
-
project=_PROJECT,
|
663
|
-
subproject=_SUBPROJECT,
|
664
|
-
custom_tags=dict([("autogen", True)]),
|
665
|
-
)
|
666
653
|
def predict_log_proba(
|
667
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
668
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -699,16 +686,6 @@ class LinearRegression(BaseTransformer):
|
|
699
686
|
return output_df
|
700
687
|
|
701
688
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
702
|
-
@telemetry.send_api_usage_telemetry(
|
703
|
-
project=_PROJECT,
|
704
|
-
subproject=_SUBPROJECT,
|
705
|
-
custom_tags=dict([("autogen", True)]),
|
706
|
-
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
689
|
def decision_function(
|
713
690
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
714
691
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -809,11 +786,6 @@ class LinearRegression(BaseTransformer):
|
|
809
786
|
subproject=_SUBPROJECT,
|
810
787
|
custom_tags=dict([("autogen", True)]),
|
811
788
|
)
|
812
|
-
@telemetry.add_stmt_params_to_df(
|
813
|
-
project=_PROJECT,
|
814
|
-
subproject=_SUBPROJECT,
|
815
|
-
custom_tags=dict([("autogen", True)]),
|
816
|
-
)
|
817
789
|
def kneighbors(
|
818
790
|
self,
|
819
791
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -873,9 +845,9 @@ class LinearRegression(BaseTransformer):
|
|
873
845
|
# For classifier, the type of predict is the same as the type of label
|
874
846
|
if self._sklearn_object._estimator_type == 'classifier':
|
875
847
|
# label columns is the desired type for output
|
876
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
848
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
877
849
|
# rename the output columns
|
878
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
850
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
879
851
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
880
852
|
([] if self._drop_input_cols else inputs)
|
881
853
|
+ outputs)
|