snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LabelSpreading(BaseTransformer):
|
57
58
|
r"""LabelSpreading model for semi-supervised learning
|
58
59
|
For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
|
@@ -60,6 +61,51 @@ class LabelSpreading(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: {'knn', 'rbf'} or callable, default='rbf'
|
64
110
|
String identifier for kernel function to use or the kernel function
|
65
111
|
itself. Only 'rbf' and 'knn' strings are valid inputs. The function
|
@@ -91,42 +137,6 @@ class LabelSpreading(BaseTransformer):
|
|
91
137
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
92
138
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
93
139
|
for more details.
|
94
|
-
|
95
|
-
input_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that contain features.
|
97
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
98
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
99
|
-
parameters are considered input columns.
|
100
|
-
|
101
|
-
label_cols: Optional[Union[str, List[str]]]
|
102
|
-
A string or list of strings representing column names that contain labels.
|
103
|
-
This is a required param for estimators, as there is no way to infer these
|
104
|
-
columns. If this parameter is not specified, then object is fitted without
|
105
|
-
labels (like a transformer).
|
106
|
-
|
107
|
-
output_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that will store the
|
109
|
-
output of predict and transform operations. The length of output_cols must
|
110
|
-
match the expected number of output columns from the specific estimator or
|
111
|
-
transformer class used.
|
112
|
-
If this parameter is not specified, output column names are derived by
|
113
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
114
|
-
column names work for estimator's predict() method, but output_cols must
|
115
|
-
be set explicitly for transformers.
|
116
|
-
|
117
|
-
sample_weight_col: Optional[str]
|
118
|
-
A string representing the column name containing the sample weights.
|
119
|
-
This argument is only required when working with weighted datasets.
|
120
|
-
|
121
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
122
|
-
A string or a list of strings indicating column names to be excluded from any
|
123
|
-
operations (such as train, transform, or inference). These specified column(s)
|
124
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
125
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
126
|
-
columns, like index columns, during training or inference.
|
127
|
-
|
128
|
-
drop_input_cols: Optional[bool], default=False
|
129
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
130
140
|
"""
|
131
141
|
|
132
142
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -154,7 +164,7 @@ class LabelSpreading(BaseTransformer):
|
|
154
164
|
self.set_passthrough_cols(passthrough_cols)
|
155
165
|
self.set_drop_input_cols(drop_input_cols)
|
156
166
|
self.set_sample_weight_col(sample_weight_col)
|
157
|
-
deps = set(
|
167
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
158
168
|
|
159
169
|
self._deps = list(deps)
|
160
170
|
|
@@ -169,13 +179,14 @@ class LabelSpreading(BaseTransformer):
|
|
169
179
|
args=init_args,
|
170
180
|
klass=sklearn.semi_supervised.LabelSpreading
|
171
181
|
)
|
172
|
-
self._sklearn_object = sklearn.semi_supervised.LabelSpreading(
|
182
|
+
self._sklearn_object: Any = sklearn.semi_supervised.LabelSpreading(
|
173
183
|
**cleaned_up_init_args,
|
174
184
|
)
|
175
185
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
176
186
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
177
187
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
178
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
188
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
189
|
+
self._autogenerated = True
|
179
190
|
|
180
191
|
def _get_rand_id(self) -> str:
|
181
192
|
"""
|
@@ -231,54 +242,48 @@ class LabelSpreading(BaseTransformer):
|
|
231
242
|
self
|
232
243
|
"""
|
233
244
|
self._infer_input_output_cols(dataset)
|
234
|
-
if isinstance(dataset,
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
self.
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
245
|
+
if isinstance(dataset, DataFrame):
|
246
|
+
session = dataset._session
|
247
|
+
assert session is not None # keep mypy happy
|
248
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
+
|
253
|
+
# Specify input columns so column pruning will be enforced
|
254
|
+
selected_cols = self._get_active_columns()
|
255
|
+
if len(selected_cols) > 0:
|
256
|
+
dataset = dataset.select(selected_cols)
|
257
|
+
|
258
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
259
|
+
|
260
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
261
|
+
if SNOWML_SPROC_ENV in os.environ:
|
262
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
263
|
+
project=_PROJECT,
|
264
|
+
subproject=_SUBPROJECT,
|
265
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelSpreading.__class__.__name__),
|
266
|
+
api_calls=[Session.call],
|
267
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
268
|
+
)
|
269
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
270
|
+
pd_df.columns = dataset.columns
|
271
|
+
dataset = pd_df
|
272
|
+
|
273
|
+
model_trainer = ModelTrainerBuilder.build(
|
274
|
+
estimator=self._sklearn_object,
|
275
|
+
dataset=dataset,
|
276
|
+
input_cols=self.input_cols,
|
277
|
+
label_cols=self.label_cols,
|
278
|
+
sample_weight_col=self.sample_weight_col,
|
279
|
+
autogenerated=self._autogenerated,
|
280
|
+
subproject=_SUBPROJECT
|
281
|
+
)
|
282
|
+
self._sklearn_object = model_trainer.train()
|
250
283
|
self._is_fitted = True
|
251
284
|
self._get_model_signatures(dataset)
|
252
285
|
return self
|
253
286
|
|
254
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
255
|
-
session = dataset._session
|
256
|
-
assert session is not None # keep mypy happy
|
257
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
258
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
259
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
260
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
261
|
-
|
262
|
-
# Specify input columns so column pruning will be enforced
|
263
|
-
selected_cols = self._get_active_columns()
|
264
|
-
if len(selected_cols) > 0:
|
265
|
-
dataset = dataset.select(selected_cols)
|
266
|
-
|
267
|
-
estimator = self._sklearn_object
|
268
|
-
assert estimator is not None # Keep mypy happy
|
269
|
-
|
270
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
|
-
|
272
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
273
|
-
dataset,
|
274
|
-
session,
|
275
|
-
estimator,
|
276
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
277
|
-
self.input_cols,
|
278
|
-
self.label_cols,
|
279
|
-
self.sample_weight_col,
|
280
|
-
)
|
281
|
-
|
282
287
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
283
288
|
if self._drop_input_cols:
|
284
289
|
return []
|
@@ -466,11 +471,6 @@ class LabelSpreading(BaseTransformer):
|
|
466
471
|
subproject=_SUBPROJECT,
|
467
472
|
custom_tags=dict([("autogen", True)]),
|
468
473
|
)
|
469
|
-
@telemetry.add_stmt_params_to_df(
|
470
|
-
project=_PROJECT,
|
471
|
-
subproject=_SUBPROJECT,
|
472
|
-
custom_tags=dict([("autogen", True)]),
|
473
|
-
)
|
474
474
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
475
475
|
"""Perform inductive inference across the model
|
476
476
|
For more details on this function, see [sklearn.semi_supervised.LabelSpreading.predict]
|
@@ -524,11 +524,6 @@ class LabelSpreading(BaseTransformer):
|
|
524
524
|
subproject=_SUBPROJECT,
|
525
525
|
custom_tags=dict([("autogen", True)]),
|
526
526
|
)
|
527
|
-
@telemetry.add_stmt_params_to_df(
|
528
|
-
project=_PROJECT,
|
529
|
-
subproject=_SUBPROJECT,
|
530
|
-
custom_tags=dict([("autogen", True)]),
|
531
|
-
)
|
532
527
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
533
528
|
"""Method not supported for this class.
|
534
529
|
|
@@ -585,7 +580,8 @@ class LabelSpreading(BaseTransformer):
|
|
585
580
|
if False:
|
586
581
|
self.fit(dataset)
|
587
582
|
assert self._sklearn_object is not None
|
588
|
-
|
583
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
584
|
+
return labels
|
589
585
|
else:
|
590
586
|
raise NotImplementedError
|
591
587
|
|
@@ -621,6 +617,7 @@ class LabelSpreading(BaseTransformer):
|
|
621
617
|
output_cols = []
|
622
618
|
|
623
619
|
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
624
621
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
625
622
|
|
626
623
|
return rv
|
@@ -631,11 +628,6 @@ class LabelSpreading(BaseTransformer):
|
|
631
628
|
subproject=_SUBPROJECT,
|
632
629
|
custom_tags=dict([("autogen", True)]),
|
633
630
|
)
|
634
|
-
@telemetry.add_stmt_params_to_df(
|
635
|
-
project=_PROJECT,
|
636
|
-
subproject=_SUBPROJECT,
|
637
|
-
custom_tags=dict([("autogen", True)]),
|
638
|
-
)
|
639
631
|
def predict_proba(
|
640
632
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
641
633
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -678,11 +670,6 @@ class LabelSpreading(BaseTransformer):
|
|
678
670
|
subproject=_SUBPROJECT,
|
679
671
|
custom_tags=dict([("autogen", True)]),
|
680
672
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
673
|
def predict_log_proba(
|
687
674
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
688
675
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -721,16 +708,6 @@ class LabelSpreading(BaseTransformer):
|
|
721
708
|
return output_df
|
722
709
|
|
723
710
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
724
|
-
@telemetry.send_api_usage_telemetry(
|
725
|
-
project=_PROJECT,
|
726
|
-
subproject=_SUBPROJECT,
|
727
|
-
custom_tags=dict([("autogen", True)]),
|
728
|
-
)
|
729
|
-
@telemetry.add_stmt_params_to_df(
|
730
|
-
project=_PROJECT,
|
731
|
-
subproject=_SUBPROJECT,
|
732
|
-
custom_tags=dict([("autogen", True)]),
|
733
|
-
)
|
734
711
|
def decision_function(
|
735
712
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
736
713
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -831,11 +808,6 @@ class LabelSpreading(BaseTransformer):
|
|
831
808
|
subproject=_SUBPROJECT,
|
832
809
|
custom_tags=dict([("autogen", True)]),
|
833
810
|
)
|
834
|
-
@telemetry.add_stmt_params_to_df(
|
835
|
-
project=_PROJECT,
|
836
|
-
subproject=_SUBPROJECT,
|
837
|
-
custom_tags=dict([("autogen", True)]),
|
838
|
-
)
|
839
811
|
def kneighbors(
|
840
812
|
self,
|
841
813
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -895,9 +867,9 @@ class LabelSpreading(BaseTransformer):
|
|
895
867
|
# For classifier, the type of predict is the same as the type of label
|
896
868
|
if self._sklearn_object._estimator_type == 'classifier':
|
897
869
|
# label columns is the desired type for output
|
898
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
870
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
899
871
|
# rename the output columns
|
900
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
872
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
901
873
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
902
874
|
([] if self._drop_input_cols else inputs)
|
903
875
|
+ outputs)
|