snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelDensity(BaseTransformer):
|
57
58
|
r"""Kernel Density Estimation
|
58
59
|
For more details on this class, see [sklearn.neighbors.KernelDensity]
|
@@ -60,6 +61,49 @@ class KernelDensity(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
bandwidth: float or {"scott", "silverman"}, default=1.0
|
64
108
|
The bandwidth of the kernel. If bandwidth is a float, it defines the
|
65
109
|
bandwidth of the kernel. If bandwidth is a string, one of the estimation
|
@@ -104,42 +148,6 @@ class KernelDensity(BaseTransformer):
|
|
104
148
|
Additional parameters to be passed to the tree for use with the
|
105
149
|
metric. For more information, see the documentation of
|
106
150
|
:class:`BallTree` or :class:`KDTree`.
|
107
|
-
|
108
|
-
input_cols: Optional[Union[str, List[str]]]
|
109
|
-
A string or list of strings representing column names that contain features.
|
110
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
111
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
112
|
-
parameters are considered input columns.
|
113
|
-
|
114
|
-
label_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain labels.
|
116
|
-
This is a required param for estimators, as there is no way to infer these
|
117
|
-
columns. If this parameter is not specified, then object is fitted without
|
118
|
-
labels (like a transformer).
|
119
|
-
|
120
|
-
output_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that will store the
|
122
|
-
output of predict and transform operations. The length of output_cols must
|
123
|
-
match the expected number of output columns from the specific estimator or
|
124
|
-
transformer class used.
|
125
|
-
If this parameter is not specified, output column names are derived by
|
126
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
127
|
-
column names work for estimator's predict() method, but output_cols must
|
128
|
-
be set explicitly for transformers.
|
129
|
-
|
130
|
-
sample_weight_col: Optional[str]
|
131
|
-
A string representing the column name containing the sample weights.
|
132
|
-
This argument is only required when working with weighted datasets.
|
133
|
-
|
134
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or a list of strings indicating column names to be excluded from any
|
136
|
-
operations (such as train, transform, or inference). These specified column(s)
|
137
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
138
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
139
|
-
columns, like index columns, during training or inference.
|
140
|
-
|
141
|
-
drop_input_cols: Optional[bool], default=False
|
142
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
143
151
|
"""
|
144
152
|
|
145
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -169,7 +177,7 @@ class KernelDensity(BaseTransformer):
|
|
169
177
|
self.set_passthrough_cols(passthrough_cols)
|
170
178
|
self.set_drop_input_cols(drop_input_cols)
|
171
179
|
self.set_sample_weight_col(sample_weight_col)
|
172
|
-
deps = set(
|
180
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
173
181
|
|
174
182
|
self._deps = list(deps)
|
175
183
|
|
@@ -186,13 +194,14 @@ class KernelDensity(BaseTransformer):
|
|
186
194
|
args=init_args,
|
187
195
|
klass=sklearn.neighbors.KernelDensity
|
188
196
|
)
|
189
|
-
self._sklearn_object = sklearn.neighbors.KernelDensity(
|
197
|
+
self._sklearn_object: Any = sklearn.neighbors.KernelDensity(
|
190
198
|
**cleaned_up_init_args,
|
191
199
|
)
|
192
200
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
193
201
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
194
202
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
195
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
203
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelDensity.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
204
|
+
self._autogenerated = True
|
196
205
|
|
197
206
|
def _get_rand_id(self) -> str:
|
198
207
|
"""
|
@@ -248,54 +257,48 @@ class KernelDensity(BaseTransformer):
|
|
248
257
|
self
|
249
258
|
"""
|
250
259
|
self._infer_input_output_cols(dataset)
|
251
|
-
if isinstance(dataset,
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
self.
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
260
|
+
if isinstance(dataset, DataFrame):
|
261
|
+
session = dataset._session
|
262
|
+
assert session is not None # keep mypy happy
|
263
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
264
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
265
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
266
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
267
|
+
|
268
|
+
# Specify input columns so column pruning will be enforced
|
269
|
+
selected_cols = self._get_active_columns()
|
270
|
+
if len(selected_cols) > 0:
|
271
|
+
dataset = dataset.select(selected_cols)
|
272
|
+
|
273
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
|
+
|
275
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
276
|
+
if SNOWML_SPROC_ENV in os.environ:
|
277
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
278
|
+
project=_PROJECT,
|
279
|
+
subproject=_SUBPROJECT,
|
280
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelDensity.__class__.__name__),
|
281
|
+
api_calls=[Session.call],
|
282
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
283
|
+
)
|
284
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
|
+
pd_df.columns = dataset.columns
|
286
|
+
dataset = pd_df
|
287
|
+
|
288
|
+
model_trainer = ModelTrainerBuilder.build(
|
289
|
+
estimator=self._sklearn_object,
|
290
|
+
dataset=dataset,
|
291
|
+
input_cols=self.input_cols,
|
292
|
+
label_cols=self.label_cols,
|
293
|
+
sample_weight_col=self.sample_weight_col,
|
294
|
+
autogenerated=self._autogenerated,
|
295
|
+
subproject=_SUBPROJECT
|
296
|
+
)
|
297
|
+
self._sklearn_object = model_trainer.train()
|
267
298
|
self._is_fitted = True
|
268
299
|
self._get_model_signatures(dataset)
|
269
300
|
return self
|
270
301
|
|
271
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
272
|
-
session = dataset._session
|
273
|
-
assert session is not None # keep mypy happy
|
274
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
275
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
276
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
277
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
278
|
-
|
279
|
-
# Specify input columns so column pruning will be enforced
|
280
|
-
selected_cols = self._get_active_columns()
|
281
|
-
if len(selected_cols) > 0:
|
282
|
-
dataset = dataset.select(selected_cols)
|
283
|
-
|
284
|
-
estimator = self._sklearn_object
|
285
|
-
assert estimator is not None # Keep mypy happy
|
286
|
-
|
287
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
288
|
-
|
289
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
290
|
-
dataset,
|
291
|
-
session,
|
292
|
-
estimator,
|
293
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
294
|
-
self.input_cols,
|
295
|
-
self.label_cols,
|
296
|
-
self.sample_weight_col,
|
297
|
-
)
|
298
|
-
|
299
302
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
300
303
|
if self._drop_input_cols:
|
301
304
|
return []
|
@@ -483,11 +486,6 @@ class KernelDensity(BaseTransformer):
|
|
483
486
|
subproject=_SUBPROJECT,
|
484
487
|
custom_tags=dict([("autogen", True)]),
|
485
488
|
)
|
486
|
-
@telemetry.add_stmt_params_to_df(
|
487
|
-
project=_PROJECT,
|
488
|
-
subproject=_SUBPROJECT,
|
489
|
-
custom_tags=dict([("autogen", True)]),
|
490
|
-
)
|
491
489
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
492
490
|
"""Method not supported for this class.
|
493
491
|
|
@@ -539,11 +537,6 @@ class KernelDensity(BaseTransformer):
|
|
539
537
|
subproject=_SUBPROJECT,
|
540
538
|
custom_tags=dict([("autogen", True)]),
|
541
539
|
)
|
542
|
-
@telemetry.add_stmt_params_to_df(
|
543
|
-
project=_PROJECT,
|
544
|
-
subproject=_SUBPROJECT,
|
545
|
-
custom_tags=dict([("autogen", True)]),
|
546
|
-
)
|
547
540
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
548
541
|
"""Method not supported for this class.
|
549
542
|
|
@@ -600,7 +593,8 @@ class KernelDensity(BaseTransformer):
|
|
600
593
|
if False:
|
601
594
|
self.fit(dataset)
|
602
595
|
assert self._sklearn_object is not None
|
603
|
-
|
596
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
597
|
+
return labels
|
604
598
|
else:
|
605
599
|
raise NotImplementedError
|
606
600
|
|
@@ -636,6 +630,7 @@ class KernelDensity(BaseTransformer):
|
|
636
630
|
output_cols = []
|
637
631
|
|
638
632
|
# Make sure column names are valid snowflake identifiers.
|
633
|
+
assert output_cols is not None # Make MyPy happy
|
639
634
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
640
635
|
|
641
636
|
return rv
|
@@ -646,11 +641,6 @@ class KernelDensity(BaseTransformer):
|
|
646
641
|
subproject=_SUBPROJECT,
|
647
642
|
custom_tags=dict([("autogen", True)]),
|
648
643
|
)
|
649
|
-
@telemetry.add_stmt_params_to_df(
|
650
|
-
project=_PROJECT,
|
651
|
-
subproject=_SUBPROJECT,
|
652
|
-
custom_tags=dict([("autogen", True)]),
|
653
|
-
)
|
654
644
|
def predict_proba(
|
655
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
656
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -691,11 +681,6 @@ class KernelDensity(BaseTransformer):
|
|
691
681
|
subproject=_SUBPROJECT,
|
692
682
|
custom_tags=dict([("autogen", True)]),
|
693
683
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
684
|
def predict_log_proba(
|
700
685
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
701
686
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,16 +717,6 @@ class KernelDensity(BaseTransformer):
|
|
732
717
|
return output_df
|
733
718
|
|
734
719
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
735
|
-
@telemetry.send_api_usage_telemetry(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
|
-
@telemetry.add_stmt_params_to_df(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
720
|
def decision_function(
|
746
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
747
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -842,11 +817,6 @@ class KernelDensity(BaseTransformer):
|
|
842
817
|
subproject=_SUBPROJECT,
|
843
818
|
custom_tags=dict([("autogen", True)]),
|
844
819
|
)
|
845
|
-
@telemetry.add_stmt_params_to_df(
|
846
|
-
project=_PROJECT,
|
847
|
-
subproject=_SUBPROJECT,
|
848
|
-
custom_tags=dict([("autogen", True)]),
|
849
|
-
)
|
850
820
|
def kneighbors(
|
851
821
|
self,
|
852
822
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -906,9 +876,9 @@ class KernelDensity(BaseTransformer):
|
|
906
876
|
# For classifier, the type of predict is the same as the type of label
|
907
877
|
if self._sklearn_object._estimator_type == 'classifier':
|
908
878
|
# label columns is the desired type for output
|
909
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
879
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
910
880
|
# rename the output columns
|
911
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
881
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
912
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
913
883
|
([] if self._drop_input_cols else inputs)
|
914
884
|
+ outputs)
|