snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KMeans(BaseTransformer):
|
57
58
|
r"""K-Means clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.KMeans]
|
@@ -61,6 +62,48 @@ class KMeans(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
64
107
|
n_clusters: int, default=8
|
65
108
|
The number of clusters to form as well as the number of
|
66
109
|
centroids to generate.
|
@@ -130,42 +173,6 @@ class KMeans(BaseTransformer):
|
|
130
173
|
|
131
174
|
`"auto"` and `"full"` are deprecated and they will be removed in
|
132
175
|
Scikit-Learn 1.3. They are both aliases for `"lloyd"`.
|
133
|
-
|
134
|
-
input_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain features.
|
136
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
137
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
138
|
-
parameters are considered input columns.
|
139
|
-
|
140
|
-
label_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain labels.
|
142
|
-
This is a required param for estimators, as there is no way to infer these
|
143
|
-
columns. If this parameter is not specified, then object is fitted without
|
144
|
-
labels (like a transformer).
|
145
|
-
|
146
|
-
output_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that will store the
|
148
|
-
output of predict and transform operations. The length of output_cols must
|
149
|
-
match the expected number of output columns from the specific estimator or
|
150
|
-
transformer class used.
|
151
|
-
If this parameter is not specified, output column names are derived by
|
152
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
153
|
-
column names work for estimator's predict() method, but output_cols must
|
154
|
-
be set explicitly for transformers.
|
155
|
-
|
156
|
-
sample_weight_col: Optional[str]
|
157
|
-
A string representing the column name containing the sample weights.
|
158
|
-
This argument is only required when working with weighted datasets.
|
159
|
-
|
160
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
161
|
-
A string or a list of strings indicating column names to be excluded from any
|
162
|
-
operations (such as train, transform, or inference). These specified column(s)
|
163
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
164
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
165
|
-
columns, like index columns, during training or inference.
|
166
|
-
|
167
|
-
drop_input_cols: Optional[bool], default=False
|
168
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
169
176
|
"""
|
170
177
|
|
171
178
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -195,7 +202,7 @@ class KMeans(BaseTransformer):
|
|
195
202
|
self.set_passthrough_cols(passthrough_cols)
|
196
203
|
self.set_drop_input_cols(drop_input_cols)
|
197
204
|
self.set_sample_weight_col(sample_weight_col)
|
198
|
-
deps = set(
|
205
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
199
206
|
|
200
207
|
self._deps = list(deps)
|
201
208
|
|
@@ -212,13 +219,14 @@ class KMeans(BaseTransformer):
|
|
212
219
|
args=init_args,
|
213
220
|
klass=sklearn.cluster.KMeans
|
214
221
|
)
|
215
|
-
self._sklearn_object = sklearn.cluster.KMeans(
|
222
|
+
self._sklearn_object: Any = sklearn.cluster.KMeans(
|
216
223
|
**cleaned_up_init_args,
|
217
224
|
)
|
218
225
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
219
226
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
220
227
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
221
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
228
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
229
|
+
self._autogenerated = True
|
222
230
|
|
223
231
|
def _get_rand_id(self) -> str:
|
224
232
|
"""
|
@@ -274,54 +282,48 @@ class KMeans(BaseTransformer):
|
|
274
282
|
self
|
275
283
|
"""
|
276
284
|
self._infer_input_output_cols(dataset)
|
277
|
-
if isinstance(dataset,
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
self.
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
285
|
+
if isinstance(dataset, DataFrame):
|
286
|
+
session = dataset._session
|
287
|
+
assert session is not None # keep mypy happy
|
288
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
289
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
290
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
291
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
292
|
+
|
293
|
+
# Specify input columns so column pruning will be enforced
|
294
|
+
selected_cols = self._get_active_columns()
|
295
|
+
if len(selected_cols) > 0:
|
296
|
+
dataset = dataset.select(selected_cols)
|
297
|
+
|
298
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
299
|
+
|
300
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
301
|
+
if SNOWML_SPROC_ENV in os.environ:
|
302
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
303
|
+
project=_PROJECT,
|
304
|
+
subproject=_SUBPROJECT,
|
305
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KMeans.__class__.__name__),
|
306
|
+
api_calls=[Session.call],
|
307
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
308
|
+
)
|
309
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
310
|
+
pd_df.columns = dataset.columns
|
311
|
+
dataset = pd_df
|
312
|
+
|
313
|
+
model_trainer = ModelTrainerBuilder.build(
|
314
|
+
estimator=self._sklearn_object,
|
315
|
+
dataset=dataset,
|
316
|
+
input_cols=self.input_cols,
|
317
|
+
label_cols=self.label_cols,
|
318
|
+
sample_weight_col=self.sample_weight_col,
|
319
|
+
autogenerated=self._autogenerated,
|
320
|
+
subproject=_SUBPROJECT
|
321
|
+
)
|
322
|
+
self._sklearn_object = model_trainer.train()
|
293
323
|
self._is_fitted = True
|
294
324
|
self._get_model_signatures(dataset)
|
295
325
|
return self
|
296
326
|
|
297
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
298
|
-
session = dataset._session
|
299
|
-
assert session is not None # keep mypy happy
|
300
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
301
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
302
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
303
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
304
|
-
|
305
|
-
# Specify input columns so column pruning will be enforced
|
306
|
-
selected_cols = self._get_active_columns()
|
307
|
-
if len(selected_cols) > 0:
|
308
|
-
dataset = dataset.select(selected_cols)
|
309
|
-
|
310
|
-
estimator = self._sklearn_object
|
311
|
-
assert estimator is not None # Keep mypy happy
|
312
|
-
|
313
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
314
|
-
|
315
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
316
|
-
dataset,
|
317
|
-
session,
|
318
|
-
estimator,
|
319
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
320
|
-
self.input_cols,
|
321
|
-
self.label_cols,
|
322
|
-
self.sample_weight_col,
|
323
|
-
)
|
324
|
-
|
325
327
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
326
328
|
if self._drop_input_cols:
|
327
329
|
return []
|
@@ -509,11 +511,6 @@ class KMeans(BaseTransformer):
|
|
509
511
|
subproject=_SUBPROJECT,
|
510
512
|
custom_tags=dict([("autogen", True)]),
|
511
513
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
514
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
515
|
"""Predict the closest cluster each sample in X belongs to
|
519
516
|
For more details on this function, see [sklearn.cluster.KMeans.predict]
|
@@ -567,11 +564,6 @@ class KMeans(BaseTransformer):
|
|
567
564
|
subproject=_SUBPROJECT,
|
568
565
|
custom_tags=dict([("autogen", True)]),
|
569
566
|
)
|
570
|
-
@telemetry.add_stmt_params_to_df(
|
571
|
-
project=_PROJECT,
|
572
|
-
subproject=_SUBPROJECT,
|
573
|
-
custom_tags=dict([("autogen", True)]),
|
574
|
-
)
|
575
567
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
576
568
|
"""Transform X to a cluster-distance space
|
577
569
|
For more details on this function, see [sklearn.cluster.KMeans.transform]
|
@@ -632,7 +624,8 @@ class KMeans(BaseTransformer):
|
|
632
624
|
if True:
|
633
625
|
self.fit(dataset)
|
634
626
|
assert self._sklearn_object is not None
|
635
|
-
|
627
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
628
|
+
return labels
|
636
629
|
else:
|
637
630
|
raise NotImplementedError
|
638
631
|
|
@@ -668,6 +661,7 @@ class KMeans(BaseTransformer):
|
|
668
661
|
output_cols = []
|
669
662
|
|
670
663
|
# Make sure column names are valid snowflake identifiers.
|
664
|
+
assert output_cols is not None # Make MyPy happy
|
671
665
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
672
666
|
|
673
667
|
return rv
|
@@ -678,11 +672,6 @@ class KMeans(BaseTransformer):
|
|
678
672
|
subproject=_SUBPROJECT,
|
679
673
|
custom_tags=dict([("autogen", True)]),
|
680
674
|
)
|
681
|
-
@telemetry.add_stmt_params_to_df(
|
682
|
-
project=_PROJECT,
|
683
|
-
subproject=_SUBPROJECT,
|
684
|
-
custom_tags=dict([("autogen", True)]),
|
685
|
-
)
|
686
675
|
def predict_proba(
|
687
676
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
688
677
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -723,11 +712,6 @@ class KMeans(BaseTransformer):
|
|
723
712
|
subproject=_SUBPROJECT,
|
724
713
|
custom_tags=dict([("autogen", True)]),
|
725
714
|
)
|
726
|
-
@telemetry.add_stmt_params_to_df(
|
727
|
-
project=_PROJECT,
|
728
|
-
subproject=_SUBPROJECT,
|
729
|
-
custom_tags=dict([("autogen", True)]),
|
730
|
-
)
|
731
715
|
def predict_log_proba(
|
732
716
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
733
717
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -764,16 +748,6 @@ class KMeans(BaseTransformer):
|
|
764
748
|
return output_df
|
765
749
|
|
766
750
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
767
|
-
@telemetry.send_api_usage_telemetry(
|
768
|
-
project=_PROJECT,
|
769
|
-
subproject=_SUBPROJECT,
|
770
|
-
custom_tags=dict([("autogen", True)]),
|
771
|
-
)
|
772
|
-
@telemetry.add_stmt_params_to_df(
|
773
|
-
project=_PROJECT,
|
774
|
-
subproject=_SUBPROJECT,
|
775
|
-
custom_tags=dict([("autogen", True)]),
|
776
|
-
)
|
777
751
|
def decision_function(
|
778
752
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
779
753
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -874,11 +848,6 @@ class KMeans(BaseTransformer):
|
|
874
848
|
subproject=_SUBPROJECT,
|
875
849
|
custom_tags=dict([("autogen", True)]),
|
876
850
|
)
|
877
|
-
@telemetry.add_stmt_params_to_df(
|
878
|
-
project=_PROJECT,
|
879
|
-
subproject=_SUBPROJECT,
|
880
|
-
custom_tags=dict([("autogen", True)]),
|
881
|
-
)
|
882
851
|
def kneighbors(
|
883
852
|
self,
|
884
853
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -938,9 +907,9 @@ class KMeans(BaseTransformer):
|
|
938
907
|
# For classifier, the type of predict is the same as the type of label
|
939
908
|
if self._sklearn_object._estimator_type == 'classifier':
|
940
909
|
# label columns is the desired type for output
|
941
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
910
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
942
911
|
# rename the output columns
|
943
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
912
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
944
913
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
945
914
|
([] if self._drop_input_cols else inputs)
|
946
915
|
+ outputs)
|