snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KMeans(BaseTransformer):
57
58
  r"""K-Means clustering
58
59
  For more details on this class, see [sklearn.cluster.KMeans]
@@ -61,6 +62,48 @@ class KMeans(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
64
107
  n_clusters: int, default=8
65
108
  The number of clusters to form as well as the number of
66
109
  centroids to generate.
@@ -130,42 +173,6 @@ class KMeans(BaseTransformer):
130
173
 
131
174
  `"auto"` and `"full"` are deprecated and they will be removed in
132
175
  Scikit-Learn 1.3. They are both aliases for `"lloyd"`.
133
-
134
- input_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain features.
136
- If this parameter is not specified, all columns in the input DataFrame except
137
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
138
- parameters are considered input columns.
139
-
140
- label_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that contain labels.
142
- This is a required param for estimators, as there is no way to infer these
143
- columns. If this parameter is not specified, then object is fitted without
144
- labels (like a transformer).
145
-
146
- output_cols: Optional[Union[str, List[str]]]
147
- A string or list of strings representing column names that will store the
148
- output of predict and transform operations. The length of output_cols must
149
- match the expected number of output columns from the specific estimator or
150
- transformer class used.
151
- If this parameter is not specified, output column names are derived by
152
- adding an OUTPUT_ prefix to the label column names. These inferred output
153
- column names work for estimator's predict() method, but output_cols must
154
- be set explicitly for transformers.
155
-
156
- sample_weight_col: Optional[str]
157
- A string representing the column name containing the sample weights.
158
- This argument is only required when working with weighted datasets.
159
-
160
- passthrough_cols: Optional[Union[str, List[str]]]
161
- A string or a list of strings indicating column names to be excluded from any
162
- operations (such as train, transform, or inference). These specified column(s)
163
- will remain untouched throughout the process. This option is helpful in scenarios
164
- requiring automatic input_cols inference, but need to avoid using specific
165
- columns, like index columns, during training or inference.
166
-
167
- drop_input_cols: Optional[bool], default=False
168
- If set, the response of predict(), transform() methods will not contain input columns.
169
176
  """
170
177
 
171
178
  def __init__( # type: ignore[no-untyped-def]
@@ -195,7 +202,7 @@ class KMeans(BaseTransformer):
195
202
  self.set_passthrough_cols(passthrough_cols)
196
203
  self.set_drop_input_cols(drop_input_cols)
197
204
  self.set_sample_weight_col(sample_weight_col)
198
- deps = set(SklearnWrapperProvider().dependencies)
205
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
199
206
 
200
207
  self._deps = list(deps)
201
208
 
@@ -212,13 +219,14 @@ class KMeans(BaseTransformer):
212
219
  args=init_args,
213
220
  klass=sklearn.cluster.KMeans
214
221
  )
215
- self._sklearn_object = sklearn.cluster.KMeans(
222
+ self._sklearn_object: Any = sklearn.cluster.KMeans(
216
223
  **cleaned_up_init_args,
217
224
  )
218
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
219
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
220
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
221
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
228
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
+ self._autogenerated = True
222
230
 
223
231
  def _get_rand_id(self) -> str:
224
232
  """
@@ -274,54 +282,48 @@ class KMeans(BaseTransformer):
274
282
  self
275
283
  """
276
284
  self._infer_input_output_cols(dataset)
277
- if isinstance(dataset, pd.DataFrame):
278
- assert self._sklearn_object is not None # keep mypy happy
279
- self._sklearn_object = self._handlers.fit_pandas(
280
- dataset,
281
- self._sklearn_object,
282
- self.input_cols,
283
- self.label_cols,
284
- self.sample_weight_col
285
- )
286
- elif isinstance(dataset, DataFrame):
287
- self._fit_snowpark(dataset)
288
- else:
289
- raise TypeError(
290
- f"Unexpected dataset type: {type(dataset)}."
291
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
292
- )
285
+ if isinstance(dataset, DataFrame):
286
+ session = dataset._session
287
+ assert session is not None # keep mypy happy
288
+ # Validate that key package version in user workspace are supported in snowflake conda channel
289
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
290
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
291
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
292
+
293
+ # Specify input columns so column pruning will be enforced
294
+ selected_cols = self._get_active_columns()
295
+ if len(selected_cols) > 0:
296
+ dataset = dataset.select(selected_cols)
297
+
298
+ self._snowpark_cols = dataset.select(self.input_cols).columns
299
+
300
+ # If we are already in a stored procedure, no need to kick off another one.
301
+ if SNOWML_SPROC_ENV in os.environ:
302
+ statement_params = telemetry.get_function_usage_statement_params(
303
+ project=_PROJECT,
304
+ subproject=_SUBPROJECT,
305
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KMeans.__class__.__name__),
306
+ api_calls=[Session.call],
307
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
+ )
309
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
310
+ pd_df.columns = dataset.columns
311
+ dataset = pd_df
312
+
313
+ model_trainer = ModelTrainerBuilder.build(
314
+ estimator=self._sklearn_object,
315
+ dataset=dataset,
316
+ input_cols=self.input_cols,
317
+ label_cols=self.label_cols,
318
+ sample_weight_col=self.sample_weight_col,
319
+ autogenerated=self._autogenerated,
320
+ subproject=_SUBPROJECT
321
+ )
322
+ self._sklearn_object = model_trainer.train()
293
323
  self._is_fitted = True
294
324
  self._get_model_signatures(dataset)
295
325
  return self
296
326
 
297
- def _fit_snowpark(self, dataset: DataFrame) -> None:
298
- session = dataset._session
299
- assert session is not None # keep mypy happy
300
- # Validate that key package version in user workspace are supported in snowflake conda channel
301
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
302
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
303
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
304
-
305
- # Specify input columns so column pruning will be enforced
306
- selected_cols = self._get_active_columns()
307
- if len(selected_cols) > 0:
308
- dataset = dataset.select(selected_cols)
309
-
310
- estimator = self._sklearn_object
311
- assert estimator is not None # Keep mypy happy
312
-
313
- self._snowpark_cols = dataset.select(self.input_cols).columns
314
-
315
- self._sklearn_object = self._handlers.fit_snowpark(
316
- dataset,
317
- session,
318
- estimator,
319
- ["snowflake-snowpark-python"] + self._get_dependencies(),
320
- self.input_cols,
321
- self.label_cols,
322
- self.sample_weight_col,
323
- )
324
-
325
327
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
326
328
  if self._drop_input_cols:
327
329
  return []
@@ -509,11 +511,6 @@ class KMeans(BaseTransformer):
509
511
  subproject=_SUBPROJECT,
510
512
  custom_tags=dict([("autogen", True)]),
511
513
  )
512
- @telemetry.add_stmt_params_to_df(
513
- project=_PROJECT,
514
- subproject=_SUBPROJECT,
515
- custom_tags=dict([("autogen", True)]),
516
- )
517
514
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
518
515
  """Predict the closest cluster each sample in X belongs to
519
516
  For more details on this function, see [sklearn.cluster.KMeans.predict]
@@ -567,11 +564,6 @@ class KMeans(BaseTransformer):
567
564
  subproject=_SUBPROJECT,
568
565
  custom_tags=dict([("autogen", True)]),
569
566
  )
570
- @telemetry.add_stmt_params_to_df(
571
- project=_PROJECT,
572
- subproject=_SUBPROJECT,
573
- custom_tags=dict([("autogen", True)]),
574
- )
575
567
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
576
568
  """Transform X to a cluster-distance space
577
569
  For more details on this function, see [sklearn.cluster.KMeans.transform]
@@ -632,7 +624,8 @@ class KMeans(BaseTransformer):
632
624
  if True:
633
625
  self.fit(dataset)
634
626
  assert self._sklearn_object is not None
635
- return self._sklearn_object.labels_
627
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
628
+ return labels
636
629
  else:
637
630
  raise NotImplementedError
638
631
 
@@ -668,6 +661,7 @@ class KMeans(BaseTransformer):
668
661
  output_cols = []
669
662
 
670
663
  # Make sure column names are valid snowflake identifiers.
664
+ assert output_cols is not None # Make MyPy happy
671
665
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
672
666
 
673
667
  return rv
@@ -678,11 +672,6 @@ class KMeans(BaseTransformer):
678
672
  subproject=_SUBPROJECT,
679
673
  custom_tags=dict([("autogen", True)]),
680
674
  )
681
- @telemetry.add_stmt_params_to_df(
682
- project=_PROJECT,
683
- subproject=_SUBPROJECT,
684
- custom_tags=dict([("autogen", True)]),
685
- )
686
675
  def predict_proba(
687
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
688
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -723,11 +712,6 @@ class KMeans(BaseTransformer):
723
712
  subproject=_SUBPROJECT,
724
713
  custom_tags=dict([("autogen", True)]),
725
714
  )
726
- @telemetry.add_stmt_params_to_df(
727
- project=_PROJECT,
728
- subproject=_SUBPROJECT,
729
- custom_tags=dict([("autogen", True)]),
730
- )
731
715
  def predict_log_proba(
732
716
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
733
717
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -764,16 +748,6 @@ class KMeans(BaseTransformer):
764
748
  return output_df
765
749
 
766
750
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
767
- @telemetry.send_api_usage_telemetry(
768
- project=_PROJECT,
769
- subproject=_SUBPROJECT,
770
- custom_tags=dict([("autogen", True)]),
771
- )
772
- @telemetry.add_stmt_params_to_df(
773
- project=_PROJECT,
774
- subproject=_SUBPROJECT,
775
- custom_tags=dict([("autogen", True)]),
776
- )
777
751
  def decision_function(
778
752
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
779
753
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -874,11 +848,6 @@ class KMeans(BaseTransformer):
874
848
  subproject=_SUBPROJECT,
875
849
  custom_tags=dict([("autogen", True)]),
876
850
  )
877
- @telemetry.add_stmt_params_to_df(
878
- project=_PROJECT,
879
- subproject=_SUBPROJECT,
880
- custom_tags=dict([("autogen", True)]),
881
- )
882
851
  def kneighbors(
883
852
  self,
884
853
  dataset: Union[DataFrame, pd.DataFrame],
@@ -938,9 +907,9 @@ class KMeans(BaseTransformer):
938
907
  # For classifier, the type of predict is the same as the type of label
939
908
  if self._sklearn_object._estimator_type == 'classifier':
940
909
  # label columns is the desired type for output
941
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
910
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
942
911
  # rename the output columns
943
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
912
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
944
913
  self._model_signature_dict["predict"] = ModelSignature(inputs,
945
914
  ([] if self._drop_input_cols else inputs)
946
915
  + outputs)