snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultiTaskLasso(BaseTransformer):
|
57
58
|
r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.MultiTaskLasso]
|
@@ -60,6 +61,51 @@ class MultiTaskLasso(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the L1/L2 term. Defaults to 1.0.
|
65
111
|
|
@@ -96,42 +142,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
96
142
|
rather than looping over features sequentially by default. This
|
97
143
|
(setting to 'random') often leads to significantly faster convergence
|
98
144
|
especially when tol is higher than 1e-4.
|
99
|
-
|
100
|
-
input_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain features.
|
102
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
103
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
104
|
-
parameters are considered input columns.
|
105
|
-
|
106
|
-
label_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain labels.
|
108
|
-
This is a required param for estimators, as there is no way to infer these
|
109
|
-
columns. If this parameter is not specified, then object is fitted without
|
110
|
-
labels (like a transformer).
|
111
|
-
|
112
|
-
output_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that will store the
|
114
|
-
output of predict and transform operations. The length of output_cols must
|
115
|
-
match the expected number of output columns from the specific estimator or
|
116
|
-
transformer class used.
|
117
|
-
If this parameter is not specified, output column names are derived by
|
118
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
119
|
-
column names work for estimator's predict() method, but output_cols must
|
120
|
-
be set explicitly for transformers.
|
121
|
-
|
122
|
-
sample_weight_col: Optional[str]
|
123
|
-
A string representing the column name containing the sample weights.
|
124
|
-
This argument is only required when working with weighted datasets.
|
125
|
-
|
126
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
127
|
-
A string or a list of strings indicating column names to be excluded from any
|
128
|
-
operations (such as train, transform, or inference). These specified column(s)
|
129
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
130
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
131
|
-
columns, like index columns, during training or inference.
|
132
|
-
|
133
|
-
drop_input_cols: Optional[bool], default=False
|
134
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
135
145
|
"""
|
136
146
|
|
137
147
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -160,7 +170,7 @@ class MultiTaskLasso(BaseTransformer):
|
|
160
170
|
self.set_passthrough_cols(passthrough_cols)
|
161
171
|
self.set_drop_input_cols(drop_input_cols)
|
162
172
|
self.set_sample_weight_col(sample_weight_col)
|
163
|
-
deps = set(
|
173
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
164
174
|
|
165
175
|
self._deps = list(deps)
|
166
176
|
|
@@ -176,13 +186,14 @@ class MultiTaskLasso(BaseTransformer):
|
|
176
186
|
args=init_args,
|
177
187
|
klass=sklearn.linear_model.MultiTaskLasso
|
178
188
|
)
|
179
|
-
self._sklearn_object = sklearn.linear_model.MultiTaskLasso(
|
189
|
+
self._sklearn_object: Any = sklearn.linear_model.MultiTaskLasso(
|
180
190
|
**cleaned_up_init_args,
|
181
191
|
)
|
182
192
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
183
193
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
184
194
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
185
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
195
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskLasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
196
|
+
self._autogenerated = True
|
186
197
|
|
187
198
|
def _get_rand_id(self) -> str:
|
188
199
|
"""
|
@@ -238,54 +249,48 @@ class MultiTaskLasso(BaseTransformer):
|
|
238
249
|
self
|
239
250
|
"""
|
240
251
|
self._infer_input_output_cols(dataset)
|
241
|
-
if isinstance(dataset,
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
self.
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
252
|
+
if isinstance(dataset, DataFrame):
|
253
|
+
session = dataset._session
|
254
|
+
assert session is not None # keep mypy happy
|
255
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
+
|
260
|
+
# Specify input columns so column pruning will be enforced
|
261
|
+
selected_cols = self._get_active_columns()
|
262
|
+
if len(selected_cols) > 0:
|
263
|
+
dataset = dataset.select(selected_cols)
|
264
|
+
|
265
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
+
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
|
+
if SNOWML_SPROC_ENV in os.environ:
|
269
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
270
|
+
project=_PROJECT,
|
271
|
+
subproject=_SUBPROJECT,
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLasso.__class__.__name__),
|
273
|
+
api_calls=[Session.call],
|
274
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
|
+
)
|
276
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
|
+
pd_df.columns = dataset.columns
|
278
|
+
dataset = pd_df
|
279
|
+
|
280
|
+
model_trainer = ModelTrainerBuilder.build(
|
281
|
+
estimator=self._sklearn_object,
|
282
|
+
dataset=dataset,
|
283
|
+
input_cols=self.input_cols,
|
284
|
+
label_cols=self.label_cols,
|
285
|
+
sample_weight_col=self.sample_weight_col,
|
286
|
+
autogenerated=self._autogenerated,
|
287
|
+
subproject=_SUBPROJECT
|
288
|
+
)
|
289
|
+
self._sklearn_object = model_trainer.train()
|
257
290
|
self._is_fitted = True
|
258
291
|
self._get_model_signatures(dataset)
|
259
292
|
return self
|
260
293
|
|
261
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
262
|
-
session = dataset._session
|
263
|
-
assert session is not None # keep mypy happy
|
264
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
265
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
266
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
267
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
268
|
-
|
269
|
-
# Specify input columns so column pruning will be enforced
|
270
|
-
selected_cols = self._get_active_columns()
|
271
|
-
if len(selected_cols) > 0:
|
272
|
-
dataset = dataset.select(selected_cols)
|
273
|
-
|
274
|
-
estimator = self._sklearn_object
|
275
|
-
assert estimator is not None # Keep mypy happy
|
276
|
-
|
277
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
|
-
|
279
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
280
|
-
dataset,
|
281
|
-
session,
|
282
|
-
estimator,
|
283
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
284
|
-
self.input_cols,
|
285
|
-
self.label_cols,
|
286
|
-
self.sample_weight_col,
|
287
|
-
)
|
288
|
-
|
289
294
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
290
295
|
if self._drop_input_cols:
|
291
296
|
return []
|
@@ -473,11 +478,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
473
478
|
subproject=_SUBPROJECT,
|
474
479
|
custom_tags=dict([("autogen", True)]),
|
475
480
|
)
|
476
|
-
@telemetry.add_stmt_params_to_df(
|
477
|
-
project=_PROJECT,
|
478
|
-
subproject=_SUBPROJECT,
|
479
|
-
custom_tags=dict([("autogen", True)]),
|
480
|
-
)
|
481
481
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
482
482
|
"""Predict using the linear model
|
483
483
|
For more details on this function, see [sklearn.linear_model.MultiTaskLasso.predict]
|
@@ -531,11 +531,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
531
531
|
subproject=_SUBPROJECT,
|
532
532
|
custom_tags=dict([("autogen", True)]),
|
533
533
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
534
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
535
|
"""Method not supported for this class.
|
541
536
|
|
@@ -592,7 +587,8 @@ class MultiTaskLasso(BaseTransformer):
|
|
592
587
|
if False:
|
593
588
|
self.fit(dataset)
|
594
589
|
assert self._sklearn_object is not None
|
595
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
596
592
|
else:
|
597
593
|
raise NotImplementedError
|
598
594
|
|
@@ -628,6 +624,7 @@ class MultiTaskLasso(BaseTransformer):
|
|
628
624
|
output_cols = []
|
629
625
|
|
630
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
631
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
632
629
|
|
633
630
|
return rv
|
@@ -638,11 +635,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
638
635
|
subproject=_SUBPROJECT,
|
639
636
|
custom_tags=dict([("autogen", True)]),
|
640
637
|
)
|
641
|
-
@telemetry.add_stmt_params_to_df(
|
642
|
-
project=_PROJECT,
|
643
|
-
subproject=_SUBPROJECT,
|
644
|
-
custom_tags=dict([("autogen", True)]),
|
645
|
-
)
|
646
638
|
def predict_proba(
|
647
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
648
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -683,11 +675,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
683
675
|
subproject=_SUBPROJECT,
|
684
676
|
custom_tags=dict([("autogen", True)]),
|
685
677
|
)
|
686
|
-
@telemetry.add_stmt_params_to_df(
|
687
|
-
project=_PROJECT,
|
688
|
-
subproject=_SUBPROJECT,
|
689
|
-
custom_tags=dict([("autogen", True)]),
|
690
|
-
)
|
691
678
|
def predict_log_proba(
|
692
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
693
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -724,16 +711,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
724
711
|
return output_df
|
725
712
|
|
726
713
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
727
|
-
@telemetry.send_api_usage_telemetry(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
|
-
@telemetry.add_stmt_params_to_df(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
714
|
def decision_function(
|
738
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
739
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -834,11 +811,6 @@ class MultiTaskLasso(BaseTransformer):
|
|
834
811
|
subproject=_SUBPROJECT,
|
835
812
|
custom_tags=dict([("autogen", True)]),
|
836
813
|
)
|
837
|
-
@telemetry.add_stmt_params_to_df(
|
838
|
-
project=_PROJECT,
|
839
|
-
subproject=_SUBPROJECT,
|
840
|
-
custom_tags=dict([("autogen", True)]),
|
841
|
-
)
|
842
814
|
def kneighbors(
|
843
815
|
self,
|
844
816
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -898,9 +870,9 @@ class MultiTaskLasso(BaseTransformer):
|
|
898
870
|
# For classifier, the type of predict is the same as the type of label
|
899
871
|
if self._sklearn_object._estimator_type == 'classifier':
|
900
872
|
# label columns is the desired type for output
|
901
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
873
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
902
874
|
# rename the output columns
|
903
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
875
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
904
876
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
905
877
|
([] if self._drop_input_cols else inputs)
|
906
878
|
+ outputs)
|