snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MeanShift(BaseTransformer):
57
58
  r"""Mean shift clustering using a flat kernel
58
59
  For more details on this class, see [sklearn.cluster.MeanShift]
@@ -60,6 +61,49 @@ class MeanShift(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  bandwidth: float, default=None
64
108
  Bandwidth used in the flat kernel.
65
109
 
@@ -109,42 +153,6 @@ class MeanShift(BaseTransformer):
109
153
  max_iter: int, default=300
110
154
  Maximum number of iterations, per seed point before the clustering
111
155
  operation terminates (for that seed point), if has not converged yet.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
117
- parameters are considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- passthrough_cols: Optional[Union[str, List[str]]]
140
- A string or a list of strings indicating column names to be excluded from any
141
- operations (such as train, transform, or inference). These specified column(s)
142
- will remain untouched throughout the process. This option is helpful in scenarios
143
- requiring automatic input_cols inference, but need to avoid using specific
144
- columns, like index columns, during training or inference.
145
-
146
- drop_input_cols: Optional[bool], default=False
147
- If set, the response of predict(), transform() methods will not contain input columns.
148
156
  """
149
157
 
150
158
  def __init__( # type: ignore[no-untyped-def]
@@ -172,7 +180,7 @@ class MeanShift(BaseTransformer):
172
180
  self.set_passthrough_cols(passthrough_cols)
173
181
  self.set_drop_input_cols(drop_input_cols)
174
182
  self.set_sample_weight_col(sample_weight_col)
175
- deps = set(SklearnWrapperProvider().dependencies)
183
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
176
184
 
177
185
  self._deps = list(deps)
178
186
 
@@ -187,13 +195,14 @@ class MeanShift(BaseTransformer):
187
195
  args=init_args,
188
196
  klass=sklearn.cluster.MeanShift
189
197
  )
190
- self._sklearn_object = sklearn.cluster.MeanShift(
198
+ self._sklearn_object: Any = sklearn.cluster.MeanShift(
191
199
  **cleaned_up_init_args,
192
200
  )
193
201
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
194
202
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
195
203
  self._snowpark_cols: Optional[List[str]] = self.input_cols
196
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
204
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
205
+ self._autogenerated = True
197
206
 
198
207
  def _get_rand_id(self) -> str:
199
208
  """
@@ -249,54 +258,48 @@ class MeanShift(BaseTransformer):
249
258
  self
250
259
  """
251
260
  self._infer_input_output_cols(dataset)
252
- if isinstance(dataset, pd.DataFrame):
253
- assert self._sklearn_object is not None # keep mypy happy
254
- self._sklearn_object = self._handlers.fit_pandas(
255
- dataset,
256
- self._sklearn_object,
257
- self.input_cols,
258
- self.label_cols,
259
- self.sample_weight_col
260
- )
261
- elif isinstance(dataset, DataFrame):
262
- self._fit_snowpark(dataset)
263
- else:
264
- raise TypeError(
265
- f"Unexpected dataset type: {type(dataset)}."
266
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
267
- )
261
+ if isinstance(dataset, DataFrame):
262
+ session = dataset._session
263
+ assert session is not None # keep mypy happy
264
+ # Validate that key package version in user workspace are supported in snowflake conda channel
265
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
266
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
267
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
268
+
269
+ # Specify input columns so column pruning will be enforced
270
+ selected_cols = self._get_active_columns()
271
+ if len(selected_cols) > 0:
272
+ dataset = dataset.select(selected_cols)
273
+
274
+ self._snowpark_cols = dataset.select(self.input_cols).columns
275
+
276
+ # If we are already in a stored procedure, no need to kick off another one.
277
+ if SNOWML_SPROC_ENV in os.environ:
278
+ statement_params = telemetry.get_function_usage_statement_params(
279
+ project=_PROJECT,
280
+ subproject=_SUBPROJECT,
281
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MeanShift.__class__.__name__),
282
+ api_calls=[Session.call],
283
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
284
+ )
285
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
286
+ pd_df.columns = dataset.columns
287
+ dataset = pd_df
288
+
289
+ model_trainer = ModelTrainerBuilder.build(
290
+ estimator=self._sklearn_object,
291
+ dataset=dataset,
292
+ input_cols=self.input_cols,
293
+ label_cols=self.label_cols,
294
+ sample_weight_col=self.sample_weight_col,
295
+ autogenerated=self._autogenerated,
296
+ subproject=_SUBPROJECT
297
+ )
298
+ self._sklearn_object = model_trainer.train()
268
299
  self._is_fitted = True
269
300
  self._get_model_signatures(dataset)
270
301
  return self
271
302
 
272
- def _fit_snowpark(self, dataset: DataFrame) -> None:
273
- session = dataset._session
274
- assert session is not None # keep mypy happy
275
- # Validate that key package version in user workspace are supported in snowflake conda channel
276
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
277
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
278
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
279
-
280
- # Specify input columns so column pruning will be enforced
281
- selected_cols = self._get_active_columns()
282
- if len(selected_cols) > 0:
283
- dataset = dataset.select(selected_cols)
284
-
285
- estimator = self._sklearn_object
286
- assert estimator is not None # Keep mypy happy
287
-
288
- self._snowpark_cols = dataset.select(self.input_cols).columns
289
-
290
- self._sklearn_object = self._handlers.fit_snowpark(
291
- dataset,
292
- session,
293
- estimator,
294
- ["snowflake-snowpark-python"] + self._get_dependencies(),
295
- self.input_cols,
296
- self.label_cols,
297
- self.sample_weight_col,
298
- )
299
-
300
303
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
301
304
  if self._drop_input_cols:
302
305
  return []
@@ -484,11 +487,6 @@ class MeanShift(BaseTransformer):
484
487
  subproject=_SUBPROJECT,
485
488
  custom_tags=dict([("autogen", True)]),
486
489
  )
487
- @telemetry.add_stmt_params_to_df(
488
- project=_PROJECT,
489
- subproject=_SUBPROJECT,
490
- custom_tags=dict([("autogen", True)]),
491
- )
492
490
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
493
491
  """Predict the closest cluster each sample in X belongs to
494
492
  For more details on this function, see [sklearn.cluster.MeanShift.predict]
@@ -542,11 +540,6 @@ class MeanShift(BaseTransformer):
542
540
  subproject=_SUBPROJECT,
543
541
  custom_tags=dict([("autogen", True)]),
544
542
  )
545
- @telemetry.add_stmt_params_to_df(
546
- project=_PROJECT,
547
- subproject=_SUBPROJECT,
548
- custom_tags=dict([("autogen", True)]),
549
- )
550
543
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
551
544
  """Method not supported for this class.
552
545
 
@@ -605,7 +598,8 @@ class MeanShift(BaseTransformer):
605
598
  if True:
606
599
  self.fit(dataset)
607
600
  assert self._sklearn_object is not None
608
- return self._sklearn_object.labels_
601
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
602
+ return labels
609
603
  else:
610
604
  raise NotImplementedError
611
605
 
@@ -641,6 +635,7 @@ class MeanShift(BaseTransformer):
641
635
  output_cols = []
642
636
 
643
637
  # Make sure column names are valid snowflake identifiers.
638
+ assert output_cols is not None # Make MyPy happy
644
639
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
640
 
646
641
  return rv
@@ -651,11 +646,6 @@ class MeanShift(BaseTransformer):
651
646
  subproject=_SUBPROJECT,
652
647
  custom_tags=dict([("autogen", True)]),
653
648
  )
654
- @telemetry.add_stmt_params_to_df(
655
- project=_PROJECT,
656
- subproject=_SUBPROJECT,
657
- custom_tags=dict([("autogen", True)]),
658
- )
659
649
  def predict_proba(
660
650
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
661
651
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -696,11 +686,6 @@ class MeanShift(BaseTransformer):
696
686
  subproject=_SUBPROJECT,
697
687
  custom_tags=dict([("autogen", True)]),
698
688
  )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
689
  def predict_log_proba(
705
690
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
706
691
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -737,16 +722,6 @@ class MeanShift(BaseTransformer):
737
722
  return output_df
738
723
 
739
724
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
740
- @telemetry.send_api_usage_telemetry(
741
- project=_PROJECT,
742
- subproject=_SUBPROJECT,
743
- custom_tags=dict([("autogen", True)]),
744
- )
745
- @telemetry.add_stmt_params_to_df(
746
- project=_PROJECT,
747
- subproject=_SUBPROJECT,
748
- custom_tags=dict([("autogen", True)]),
749
- )
750
725
  def decision_function(
751
726
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
752
727
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -845,11 +820,6 @@ class MeanShift(BaseTransformer):
845
820
  subproject=_SUBPROJECT,
846
821
  custom_tags=dict([("autogen", True)]),
847
822
  )
848
- @telemetry.add_stmt_params_to_df(
849
- project=_PROJECT,
850
- subproject=_SUBPROJECT,
851
- custom_tags=dict([("autogen", True)]),
852
- )
853
823
  def kneighbors(
854
824
  self,
855
825
  dataset: Union[DataFrame, pd.DataFrame],
@@ -909,9 +879,9 @@ class MeanShift(BaseTransformer):
909
879
  # For classifier, the type of predict is the same as the type of label
910
880
  if self._sklearn_object._estimator_type == 'classifier':
911
881
  # label columns is the desired type for output
912
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
882
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
913
883
  # rename the output columns
914
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
884
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
915
885
  self._model_signature_dict["predict"] = ModelSignature(inputs,
916
886
  ([] if self._drop_input_cols else inputs)
917
887
  + outputs)