snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MeanShift(BaseTransformer):
|
57
58
|
r"""Mean shift clustering using a flat kernel
|
58
59
|
For more details on this class, see [sklearn.cluster.MeanShift]
|
@@ -60,6 +61,49 @@ class MeanShift(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
bandwidth: float, default=None
|
64
108
|
Bandwidth used in the flat kernel.
|
65
109
|
|
@@ -109,42 +153,6 @@ class MeanShift(BaseTransformer):
|
|
109
153
|
max_iter: int, default=300
|
110
154
|
Maximum number of iterations, per seed point before the clustering
|
111
155
|
operation terminates (for that seed point), if has not converged yet.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
117
|
-
parameters are considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or a list of strings indicating column names to be excluded from any
|
141
|
-
operations (such as train, transform, or inference). These specified column(s)
|
142
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
143
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
144
|
-
columns, like index columns, during training or inference.
|
145
|
-
|
146
|
-
drop_input_cols: Optional[bool], default=False
|
147
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
148
156
|
"""
|
149
157
|
|
150
158
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -172,7 +180,7 @@ class MeanShift(BaseTransformer):
|
|
172
180
|
self.set_passthrough_cols(passthrough_cols)
|
173
181
|
self.set_drop_input_cols(drop_input_cols)
|
174
182
|
self.set_sample_weight_col(sample_weight_col)
|
175
|
-
deps = set(
|
183
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
176
184
|
|
177
185
|
self._deps = list(deps)
|
178
186
|
|
@@ -187,13 +195,14 @@ class MeanShift(BaseTransformer):
|
|
187
195
|
args=init_args,
|
188
196
|
klass=sklearn.cluster.MeanShift
|
189
197
|
)
|
190
|
-
self._sklearn_object = sklearn.cluster.MeanShift(
|
198
|
+
self._sklearn_object: Any = sklearn.cluster.MeanShift(
|
191
199
|
**cleaned_up_init_args,
|
192
200
|
)
|
193
201
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
194
202
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
195
203
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
196
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
204
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MeanShift.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
205
|
+
self._autogenerated = True
|
197
206
|
|
198
207
|
def _get_rand_id(self) -> str:
|
199
208
|
"""
|
@@ -249,54 +258,48 @@ class MeanShift(BaseTransformer):
|
|
249
258
|
self
|
250
259
|
"""
|
251
260
|
self._infer_input_output_cols(dataset)
|
252
|
-
if isinstance(dataset,
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
self.
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
261
|
+
if isinstance(dataset, DataFrame):
|
262
|
+
session = dataset._session
|
263
|
+
assert session is not None # keep mypy happy
|
264
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
265
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
266
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
267
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
268
|
+
|
269
|
+
# Specify input columns so column pruning will be enforced
|
270
|
+
selected_cols = self._get_active_columns()
|
271
|
+
if len(selected_cols) > 0:
|
272
|
+
dataset = dataset.select(selected_cols)
|
273
|
+
|
274
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
275
|
+
|
276
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
277
|
+
if SNOWML_SPROC_ENV in os.environ:
|
278
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
279
|
+
project=_PROJECT,
|
280
|
+
subproject=_SUBPROJECT,
|
281
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MeanShift.__class__.__name__),
|
282
|
+
api_calls=[Session.call],
|
283
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
284
|
+
)
|
285
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
286
|
+
pd_df.columns = dataset.columns
|
287
|
+
dataset = pd_df
|
288
|
+
|
289
|
+
model_trainer = ModelTrainerBuilder.build(
|
290
|
+
estimator=self._sklearn_object,
|
291
|
+
dataset=dataset,
|
292
|
+
input_cols=self.input_cols,
|
293
|
+
label_cols=self.label_cols,
|
294
|
+
sample_weight_col=self.sample_weight_col,
|
295
|
+
autogenerated=self._autogenerated,
|
296
|
+
subproject=_SUBPROJECT
|
297
|
+
)
|
298
|
+
self._sklearn_object = model_trainer.train()
|
268
299
|
self._is_fitted = True
|
269
300
|
self._get_model_signatures(dataset)
|
270
301
|
return self
|
271
302
|
|
272
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
273
|
-
session = dataset._session
|
274
|
-
assert session is not None # keep mypy happy
|
275
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
276
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
277
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
278
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
279
|
-
|
280
|
-
# Specify input columns so column pruning will be enforced
|
281
|
-
selected_cols = self._get_active_columns()
|
282
|
-
if len(selected_cols) > 0:
|
283
|
-
dataset = dataset.select(selected_cols)
|
284
|
-
|
285
|
-
estimator = self._sklearn_object
|
286
|
-
assert estimator is not None # Keep mypy happy
|
287
|
-
|
288
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
289
|
-
|
290
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
291
|
-
dataset,
|
292
|
-
session,
|
293
|
-
estimator,
|
294
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
295
|
-
self.input_cols,
|
296
|
-
self.label_cols,
|
297
|
-
self.sample_weight_col,
|
298
|
-
)
|
299
|
-
|
300
303
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
301
304
|
if self._drop_input_cols:
|
302
305
|
return []
|
@@ -484,11 +487,6 @@ class MeanShift(BaseTransformer):
|
|
484
487
|
subproject=_SUBPROJECT,
|
485
488
|
custom_tags=dict([("autogen", True)]),
|
486
489
|
)
|
487
|
-
@telemetry.add_stmt_params_to_df(
|
488
|
-
project=_PROJECT,
|
489
|
-
subproject=_SUBPROJECT,
|
490
|
-
custom_tags=dict([("autogen", True)]),
|
491
|
-
)
|
492
490
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
493
491
|
"""Predict the closest cluster each sample in X belongs to
|
494
492
|
For more details on this function, see [sklearn.cluster.MeanShift.predict]
|
@@ -542,11 +540,6 @@ class MeanShift(BaseTransformer):
|
|
542
540
|
subproject=_SUBPROJECT,
|
543
541
|
custom_tags=dict([("autogen", True)]),
|
544
542
|
)
|
545
|
-
@telemetry.add_stmt_params_to_df(
|
546
|
-
project=_PROJECT,
|
547
|
-
subproject=_SUBPROJECT,
|
548
|
-
custom_tags=dict([("autogen", True)]),
|
549
|
-
)
|
550
543
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
551
544
|
"""Method not supported for this class.
|
552
545
|
|
@@ -605,7 +598,8 @@ class MeanShift(BaseTransformer):
|
|
605
598
|
if True:
|
606
599
|
self.fit(dataset)
|
607
600
|
assert self._sklearn_object is not None
|
608
|
-
|
601
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
602
|
+
return labels
|
609
603
|
else:
|
610
604
|
raise NotImplementedError
|
611
605
|
|
@@ -641,6 +635,7 @@ class MeanShift(BaseTransformer):
|
|
641
635
|
output_cols = []
|
642
636
|
|
643
637
|
# Make sure column names are valid snowflake identifiers.
|
638
|
+
assert output_cols is not None # Make MyPy happy
|
644
639
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
645
640
|
|
646
641
|
return rv
|
@@ -651,11 +646,6 @@ class MeanShift(BaseTransformer):
|
|
651
646
|
subproject=_SUBPROJECT,
|
652
647
|
custom_tags=dict([("autogen", True)]),
|
653
648
|
)
|
654
|
-
@telemetry.add_stmt_params_to_df(
|
655
|
-
project=_PROJECT,
|
656
|
-
subproject=_SUBPROJECT,
|
657
|
-
custom_tags=dict([("autogen", True)]),
|
658
|
-
)
|
659
649
|
def predict_proba(
|
660
650
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
661
651
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -696,11 +686,6 @@ class MeanShift(BaseTransformer):
|
|
696
686
|
subproject=_SUBPROJECT,
|
697
687
|
custom_tags=dict([("autogen", True)]),
|
698
688
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
689
|
def predict_log_proba(
|
705
690
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
706
691
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -737,16 +722,6 @@ class MeanShift(BaseTransformer):
|
|
737
722
|
return output_df
|
738
723
|
|
739
724
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
740
|
-
@telemetry.send_api_usage_telemetry(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
|
-
@telemetry.add_stmt_params_to_df(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
725
|
def decision_function(
|
751
726
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
752
727
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -845,11 +820,6 @@ class MeanShift(BaseTransformer):
|
|
845
820
|
subproject=_SUBPROJECT,
|
846
821
|
custom_tags=dict([("autogen", True)]),
|
847
822
|
)
|
848
|
-
@telemetry.add_stmt_params_to_df(
|
849
|
-
project=_PROJECT,
|
850
|
-
subproject=_SUBPROJECT,
|
851
|
-
custom_tags=dict([("autogen", True)]),
|
852
|
-
)
|
853
823
|
def kneighbors(
|
854
824
|
self,
|
855
825
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -909,9 +879,9 @@ class MeanShift(BaseTransformer):
|
|
909
879
|
# For classifier, the type of predict is the same as the type of label
|
910
880
|
if self._sklearn_object._estimator_type == 'classifier':
|
911
881
|
# label columns is the desired type for output
|
912
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
882
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
913
883
|
# rename the output columns
|
914
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
884
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
915
885
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
916
886
|
([] if self._drop_input_cols else inputs)
|
917
887
|
+ outputs)
|