snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TSNE(BaseTransformer):
|
57
58
|
r"""T-distributed Stochastic Neighbor Embedding
|
58
59
|
For more details on this class, see [sklearn.manifold.TSNE]
|
@@ -60,6 +61,49 @@ class TSNE(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=2
|
64
108
|
Dimension of the embedded space.
|
65
109
|
|
@@ -162,42 +206,6 @@ class TSNE(BaseTransformer):
|
|
162
206
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
163
207
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
164
208
|
for more details.
|
165
|
-
|
166
|
-
input_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that contain features.
|
168
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
169
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
170
|
-
parameters are considered input columns.
|
171
|
-
|
172
|
-
label_cols: Optional[Union[str, List[str]]]
|
173
|
-
A string or list of strings representing column names that contain labels.
|
174
|
-
This is a required param for estimators, as there is no way to infer these
|
175
|
-
columns. If this parameter is not specified, then object is fitted without
|
176
|
-
labels (like a transformer).
|
177
|
-
|
178
|
-
output_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that will store the
|
180
|
-
output of predict and transform operations. The length of output_cols must
|
181
|
-
match the expected number of output columns from the specific estimator or
|
182
|
-
transformer class used.
|
183
|
-
If this parameter is not specified, output column names are derived by
|
184
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
185
|
-
column names work for estimator's predict() method, but output_cols must
|
186
|
-
be set explicitly for transformers.
|
187
|
-
|
188
|
-
sample_weight_col: Optional[str]
|
189
|
-
A string representing the column name containing the sample weights.
|
190
|
-
This argument is only required when working with weighted datasets.
|
191
|
-
|
192
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
193
|
-
A string or a list of strings indicating column names to be excluded from any
|
194
|
-
operations (such as train, transform, or inference). These specified column(s)
|
195
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
196
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
197
|
-
columns, like index columns, during training or inference.
|
198
|
-
|
199
|
-
drop_input_cols: Optional[bool], default=False
|
200
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
201
209
|
"""
|
202
210
|
|
203
211
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -233,7 +241,7 @@ class TSNE(BaseTransformer):
|
|
233
241
|
self.set_passthrough_cols(passthrough_cols)
|
234
242
|
self.set_drop_input_cols(drop_input_cols)
|
235
243
|
self.set_sample_weight_col(sample_weight_col)
|
236
|
-
deps = set(
|
244
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
237
245
|
|
238
246
|
self._deps = list(deps)
|
239
247
|
|
@@ -256,13 +264,14 @@ class TSNE(BaseTransformer):
|
|
256
264
|
args=init_args,
|
257
265
|
klass=sklearn.manifold.TSNE
|
258
266
|
)
|
259
|
-
self._sklearn_object = sklearn.manifold.TSNE(
|
267
|
+
self._sklearn_object: Any = sklearn.manifold.TSNE(
|
260
268
|
**cleaned_up_init_args,
|
261
269
|
)
|
262
270
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
263
271
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
264
272
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
265
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
273
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
274
|
+
self._autogenerated = True
|
266
275
|
|
267
276
|
def _get_rand_id(self) -> str:
|
268
277
|
"""
|
@@ -318,54 +327,48 @@ class TSNE(BaseTransformer):
|
|
318
327
|
self
|
319
328
|
"""
|
320
329
|
self._infer_input_output_cols(dataset)
|
321
|
-
if isinstance(dataset,
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
self.
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
330
|
+
if isinstance(dataset, DataFrame):
|
331
|
+
session = dataset._session
|
332
|
+
assert session is not None # keep mypy happy
|
333
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
334
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
335
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
336
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
337
|
+
|
338
|
+
# Specify input columns so column pruning will be enforced
|
339
|
+
selected_cols = self._get_active_columns()
|
340
|
+
if len(selected_cols) > 0:
|
341
|
+
dataset = dataset.select(selected_cols)
|
342
|
+
|
343
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
344
|
+
|
345
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
346
|
+
if SNOWML_SPROC_ENV in os.environ:
|
347
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
348
|
+
project=_PROJECT,
|
349
|
+
subproject=_SUBPROJECT,
|
350
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TSNE.__class__.__name__),
|
351
|
+
api_calls=[Session.call],
|
352
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
353
|
+
)
|
354
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
355
|
+
pd_df.columns = dataset.columns
|
356
|
+
dataset = pd_df
|
357
|
+
|
358
|
+
model_trainer = ModelTrainerBuilder.build(
|
359
|
+
estimator=self._sklearn_object,
|
360
|
+
dataset=dataset,
|
361
|
+
input_cols=self.input_cols,
|
362
|
+
label_cols=self.label_cols,
|
363
|
+
sample_weight_col=self.sample_weight_col,
|
364
|
+
autogenerated=self._autogenerated,
|
365
|
+
subproject=_SUBPROJECT
|
366
|
+
)
|
367
|
+
self._sklearn_object = model_trainer.train()
|
337
368
|
self._is_fitted = True
|
338
369
|
self._get_model_signatures(dataset)
|
339
370
|
return self
|
340
371
|
|
341
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
342
|
-
session = dataset._session
|
343
|
-
assert session is not None # keep mypy happy
|
344
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
345
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
346
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
347
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
348
|
-
|
349
|
-
# Specify input columns so column pruning will be enforced
|
350
|
-
selected_cols = self._get_active_columns()
|
351
|
-
if len(selected_cols) > 0:
|
352
|
-
dataset = dataset.select(selected_cols)
|
353
|
-
|
354
|
-
estimator = self._sklearn_object
|
355
|
-
assert estimator is not None # Keep mypy happy
|
356
|
-
|
357
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
358
|
-
|
359
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
360
|
-
dataset,
|
361
|
-
session,
|
362
|
-
estimator,
|
363
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
364
|
-
self.input_cols,
|
365
|
-
self.label_cols,
|
366
|
-
self.sample_weight_col,
|
367
|
-
)
|
368
|
-
|
369
372
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
370
373
|
if self._drop_input_cols:
|
371
374
|
return []
|
@@ -553,11 +556,6 @@ class TSNE(BaseTransformer):
|
|
553
556
|
subproject=_SUBPROJECT,
|
554
557
|
custom_tags=dict([("autogen", True)]),
|
555
558
|
)
|
556
|
-
@telemetry.add_stmt_params_to_df(
|
557
|
-
project=_PROJECT,
|
558
|
-
subproject=_SUBPROJECT,
|
559
|
-
custom_tags=dict([("autogen", True)]),
|
560
|
-
)
|
561
559
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
562
560
|
"""Method not supported for this class.
|
563
561
|
|
@@ -609,11 +607,6 @@ class TSNE(BaseTransformer):
|
|
609
607
|
subproject=_SUBPROJECT,
|
610
608
|
custom_tags=dict([("autogen", True)]),
|
611
609
|
)
|
612
|
-
@telemetry.add_stmt_params_to_df(
|
613
|
-
project=_PROJECT,
|
614
|
-
subproject=_SUBPROJECT,
|
615
|
-
custom_tags=dict([("autogen", True)]),
|
616
|
-
)
|
617
610
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
618
611
|
"""Method not supported for this class.
|
619
612
|
|
@@ -670,7 +663,8 @@ class TSNE(BaseTransformer):
|
|
670
663
|
if False:
|
671
664
|
self.fit(dataset)
|
672
665
|
assert self._sklearn_object is not None
|
673
|
-
|
666
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
667
|
+
return labels
|
674
668
|
else:
|
675
669
|
raise NotImplementedError
|
676
670
|
|
@@ -706,6 +700,7 @@ class TSNE(BaseTransformer):
|
|
706
700
|
output_cols = []
|
707
701
|
|
708
702
|
# Make sure column names are valid snowflake identifiers.
|
703
|
+
assert output_cols is not None # Make MyPy happy
|
709
704
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
710
705
|
|
711
706
|
return rv
|
@@ -716,11 +711,6 @@ class TSNE(BaseTransformer):
|
|
716
711
|
subproject=_SUBPROJECT,
|
717
712
|
custom_tags=dict([("autogen", True)]),
|
718
713
|
)
|
719
|
-
@telemetry.add_stmt_params_to_df(
|
720
|
-
project=_PROJECT,
|
721
|
-
subproject=_SUBPROJECT,
|
722
|
-
custom_tags=dict([("autogen", True)]),
|
723
|
-
)
|
724
714
|
def predict_proba(
|
725
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
726
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -761,11 +751,6 @@ class TSNE(BaseTransformer):
|
|
761
751
|
subproject=_SUBPROJECT,
|
762
752
|
custom_tags=dict([("autogen", True)]),
|
763
753
|
)
|
764
|
-
@telemetry.add_stmt_params_to_df(
|
765
|
-
project=_PROJECT,
|
766
|
-
subproject=_SUBPROJECT,
|
767
|
-
custom_tags=dict([("autogen", True)]),
|
768
|
-
)
|
769
754
|
def predict_log_proba(
|
770
755
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
771
756
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -802,16 +787,6 @@ class TSNE(BaseTransformer):
|
|
802
787
|
return output_df
|
803
788
|
|
804
789
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
805
|
-
@telemetry.send_api_usage_telemetry(
|
806
|
-
project=_PROJECT,
|
807
|
-
subproject=_SUBPROJECT,
|
808
|
-
custom_tags=dict([("autogen", True)]),
|
809
|
-
)
|
810
|
-
@telemetry.add_stmt_params_to_df(
|
811
|
-
project=_PROJECT,
|
812
|
-
subproject=_SUBPROJECT,
|
813
|
-
custom_tags=dict([("autogen", True)]),
|
814
|
-
)
|
815
790
|
def decision_function(
|
816
791
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
817
792
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -910,11 +885,6 @@ class TSNE(BaseTransformer):
|
|
910
885
|
subproject=_SUBPROJECT,
|
911
886
|
custom_tags=dict([("autogen", True)]),
|
912
887
|
)
|
913
|
-
@telemetry.add_stmt_params_to_df(
|
914
|
-
project=_PROJECT,
|
915
|
-
subproject=_SUBPROJECT,
|
916
|
-
custom_tags=dict([("autogen", True)]),
|
917
|
-
)
|
918
888
|
def kneighbors(
|
919
889
|
self,
|
920
890
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -974,9 +944,9 @@ class TSNE(BaseTransformer):
|
|
974
944
|
# For classifier, the type of predict is the same as the type of label
|
975
945
|
if self._sklearn_object._estimator_type == 'classifier':
|
976
946
|
# label columns is the desired type for output
|
977
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
947
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
978
948
|
# rename the output columns
|
979
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
949
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
980
950
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
981
951
|
([] if self._drop_input_cols else inputs)
|
982
952
|
+ outputs)
|