snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AdditiveChi2Sampler(BaseTransformer):
57
58
  r"""Approximate feature map for additive chi2 kernel
58
59
  For more details on this class, see [sklearn.kernel_approximation.AdditiveChi2Sampler]
@@ -60,47 +61,54 @@ class AdditiveChi2Sampler(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- sample_steps: int, default=2
64
- Gives the number of (complex) sampling points.
65
-
66
- sample_interval: float, default=None
67
- Sampling interval. Must be specified when sample_steps not in {1,2,3}.
68
64
 
69
65
  input_cols: Optional[Union[str, List[str]]]
70
66
  A string or list of strings representing column names that contain features.
71
67
  If this parameter is not specified, all columns in the input DataFrame except
72
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
73
- parameters are considered input columns.
74
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
75
72
  label_cols: Optional[Union[str, List[str]]]
76
- A string or list of strings representing column names that contain labels.
77
- This is a required param for estimators, as there is no way to infer these
78
- columns. If this parameter is not specified, then object is fitted without
79
- labels (like a transformer).
80
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
81
75
  output_cols: Optional[Union[str, List[str]]]
82
76
  A string or list of strings representing column names that will store the
83
77
  output of predict and transform operations. The length of output_cols must
84
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
85
79
  transformer class used.
86
- If this parameter is not specified, output column names are derived by
87
- adding an OUTPUT_ prefix to the label column names. These inferred output
88
- column names work for estimator's predict() method, but output_cols must
89
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
90
89
 
91
90
  sample_weight_col: Optional[str]
92
91
  A string representing the column name containing the sample weights.
93
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
94
95
 
95
96
  passthrough_cols: Optional[Union[str, List[str]]]
96
97
  A string or a list of strings indicating column names to be excluded from any
97
98
  operations (such as train, transform, or inference). These specified column(s)
98
99
  will remain untouched throughout the process. This option is helpful in scenarios
99
100
  requiring automatic input_cols inference, but need to avoid using specific
100
- columns, like index columns, during training or inference.
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
101
103
 
102
104
  drop_input_cols: Optional[bool], default=False
103
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ sample_steps: int, default=2
108
+ Gives the number of (complex) sampling points.
109
+
110
+ sample_interval: float, default=None
111
+ Sampling interval. Must be specified when sample_steps not in {1,2,3}.
104
112
  """
105
113
 
106
114
  def __init__( # type: ignore[no-untyped-def]
@@ -123,7 +131,7 @@ class AdditiveChi2Sampler(BaseTransformer):
123
131
  self.set_passthrough_cols(passthrough_cols)
124
132
  self.set_drop_input_cols(drop_input_cols)
125
133
  self.set_sample_weight_col(sample_weight_col)
126
- deps = set(SklearnWrapperProvider().dependencies)
134
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
127
135
 
128
136
  self._deps = list(deps)
129
137
 
@@ -133,13 +141,14 @@ class AdditiveChi2Sampler(BaseTransformer):
133
141
  args=init_args,
134
142
  klass=sklearn.kernel_approximation.AdditiveChi2Sampler
135
143
  )
136
- self._sklearn_object = sklearn.kernel_approximation.AdditiveChi2Sampler(
144
+ self._sklearn_object: Any = sklearn.kernel_approximation.AdditiveChi2Sampler(
137
145
  **cleaned_up_init_args,
138
146
  )
139
147
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
140
148
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
141
149
  self._snowpark_cols: Optional[List[str]] = self.input_cols
142
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
150
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
151
+ self._autogenerated = True
143
152
 
144
153
  def _get_rand_id(self) -> str:
145
154
  """
@@ -195,54 +204,48 @@ class AdditiveChi2Sampler(BaseTransformer):
195
204
  self
196
205
  """
197
206
  self._infer_input_output_cols(dataset)
198
- if isinstance(dataset, pd.DataFrame):
199
- assert self._sklearn_object is not None # keep mypy happy
200
- self._sklearn_object = self._handlers.fit_pandas(
201
- dataset,
202
- self._sklearn_object,
203
- self.input_cols,
204
- self.label_cols,
205
- self.sample_weight_col
206
- )
207
- elif isinstance(dataset, DataFrame):
208
- self._fit_snowpark(dataset)
209
- else:
210
- raise TypeError(
211
- f"Unexpected dataset type: {type(dataset)}."
212
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
213
- )
207
+ if isinstance(dataset, DataFrame):
208
+ session = dataset._session
209
+ assert session is not None # keep mypy happy
210
+ # Validate that key package version in user workspace are supported in snowflake conda channel
211
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
212
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
213
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
214
+
215
+ # Specify input columns so column pruning will be enforced
216
+ selected_cols = self._get_active_columns()
217
+ if len(selected_cols) > 0:
218
+ dataset = dataset.select(selected_cols)
219
+
220
+ self._snowpark_cols = dataset.select(self.input_cols).columns
221
+
222
+ # If we are already in a stored procedure, no need to kick off another one.
223
+ if SNOWML_SPROC_ENV in os.environ:
224
+ statement_params = telemetry.get_function_usage_statement_params(
225
+ project=_PROJECT,
226
+ subproject=_SUBPROJECT,
227
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__),
228
+ api_calls=[Session.call],
229
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
230
+ )
231
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
232
+ pd_df.columns = dataset.columns
233
+ dataset = pd_df
234
+
235
+ model_trainer = ModelTrainerBuilder.build(
236
+ estimator=self._sklearn_object,
237
+ dataset=dataset,
238
+ input_cols=self.input_cols,
239
+ label_cols=self.label_cols,
240
+ sample_weight_col=self.sample_weight_col,
241
+ autogenerated=self._autogenerated,
242
+ subproject=_SUBPROJECT
243
+ )
244
+ self._sklearn_object = model_trainer.train()
214
245
  self._is_fitted = True
215
246
  self._get_model_signatures(dataset)
216
247
  return self
217
248
 
218
- def _fit_snowpark(self, dataset: DataFrame) -> None:
219
- session = dataset._session
220
- assert session is not None # keep mypy happy
221
- # Validate that key package version in user workspace are supported in snowflake conda channel
222
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
223
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
224
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
225
-
226
- # Specify input columns so column pruning will be enforced
227
- selected_cols = self._get_active_columns()
228
- if len(selected_cols) > 0:
229
- dataset = dataset.select(selected_cols)
230
-
231
- estimator = self._sklearn_object
232
- assert estimator is not None # Keep mypy happy
233
-
234
- self._snowpark_cols = dataset.select(self.input_cols).columns
235
-
236
- self._sklearn_object = self._handlers.fit_snowpark(
237
- dataset,
238
- session,
239
- estimator,
240
- ["snowflake-snowpark-python"] + self._get_dependencies(),
241
- self.input_cols,
242
- self.label_cols,
243
- self.sample_weight_col,
244
- )
245
-
246
249
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
247
250
  if self._drop_input_cols:
248
251
  return []
@@ -430,11 +433,6 @@ class AdditiveChi2Sampler(BaseTransformer):
430
433
  subproject=_SUBPROJECT,
431
434
  custom_tags=dict([("autogen", True)]),
432
435
  )
433
- @telemetry.add_stmt_params_to_df(
434
- project=_PROJECT,
435
- subproject=_SUBPROJECT,
436
- custom_tags=dict([("autogen", True)]),
437
- )
438
436
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
439
437
  """Method not supported for this class.
440
438
 
@@ -486,11 +484,6 @@ class AdditiveChi2Sampler(BaseTransformer):
486
484
  subproject=_SUBPROJECT,
487
485
  custom_tags=dict([("autogen", True)]),
488
486
  )
489
- @telemetry.add_stmt_params_to_df(
490
- project=_PROJECT,
491
- subproject=_SUBPROJECT,
492
- custom_tags=dict([("autogen", True)]),
493
- )
494
487
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
495
488
  """Apply approximate feature map to X
496
489
  For more details on this function, see [sklearn.kernel_approximation.AdditiveChi2Sampler.transform]
@@ -549,7 +542,8 @@ class AdditiveChi2Sampler(BaseTransformer):
549
542
  if False:
550
543
  self.fit(dataset)
551
544
  assert self._sklearn_object is not None
552
- return self._sklearn_object.labels_
545
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
546
+ return labels
553
547
  else:
554
548
  raise NotImplementedError
555
549
 
@@ -585,6 +579,7 @@ class AdditiveChi2Sampler(BaseTransformer):
585
579
  output_cols = []
586
580
 
587
581
  # Make sure column names are valid snowflake identifiers.
582
+ assert output_cols is not None # Make MyPy happy
588
583
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
589
584
 
590
585
  return rv
@@ -595,11 +590,6 @@ class AdditiveChi2Sampler(BaseTransformer):
595
590
  subproject=_SUBPROJECT,
596
591
  custom_tags=dict([("autogen", True)]),
597
592
  )
598
- @telemetry.add_stmt_params_to_df(
599
- project=_PROJECT,
600
- subproject=_SUBPROJECT,
601
- custom_tags=dict([("autogen", True)]),
602
- )
603
593
  def predict_proba(
604
594
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
605
595
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -640,11 +630,6 @@ class AdditiveChi2Sampler(BaseTransformer):
640
630
  subproject=_SUBPROJECT,
641
631
  custom_tags=dict([("autogen", True)]),
642
632
  )
643
- @telemetry.add_stmt_params_to_df(
644
- project=_PROJECT,
645
- subproject=_SUBPROJECT,
646
- custom_tags=dict([("autogen", True)]),
647
- )
648
633
  def predict_log_proba(
649
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
650
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -681,16 +666,6 @@ class AdditiveChi2Sampler(BaseTransformer):
681
666
  return output_df
682
667
 
683
668
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
684
- @telemetry.send_api_usage_telemetry(
685
- project=_PROJECT,
686
- subproject=_SUBPROJECT,
687
- custom_tags=dict([("autogen", True)]),
688
- )
689
- @telemetry.add_stmt_params_to_df(
690
- project=_PROJECT,
691
- subproject=_SUBPROJECT,
692
- custom_tags=dict([("autogen", True)]),
693
- )
694
669
  def decision_function(
695
670
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
696
671
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -789,11 +764,6 @@ class AdditiveChi2Sampler(BaseTransformer):
789
764
  subproject=_SUBPROJECT,
790
765
  custom_tags=dict([("autogen", True)]),
791
766
  )
792
- @telemetry.add_stmt_params_to_df(
793
- project=_PROJECT,
794
- subproject=_SUBPROJECT,
795
- custom_tags=dict([("autogen", True)]),
796
- )
797
767
  def kneighbors(
798
768
  self,
799
769
  dataset: Union[DataFrame, pd.DataFrame],
@@ -853,9 +823,9 @@ class AdditiveChi2Sampler(BaseTransformer):
853
823
  # For classifier, the type of predict is the same as the type of label
854
824
  if self._sklearn_object._estimator_type == 'classifier':
855
825
  # label columns is the desired type for output
856
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
826
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
857
827
  # rename the output columns
858
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
828
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
859
829
  self._model_signature_dict["predict"] = ModelSignature(inputs,
860
830
  ([] if self._drop_input_cols else inputs)
861
831
  + outputs)
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Nystroem(BaseTransformer):
57
58
  r"""Approximate a kernel map using a subset of the training data
58
59
  For more details on this class, see [sklearn.kernel_approximation.Nystroem]
@@ -60,6 +61,49 @@ class Nystroem(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  kernel: str or callable, default='rbf'
64
108
  Kernel map to be approximated. A callable should accept two arguments
65
109
  and the keyword arguments passed to this object as `kernel_params`, and
@@ -101,42 +145,6 @@ class Nystroem(BaseTransformer):
101
145
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
102
146
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
103
147
  for more details.
104
-
105
- input_cols: Optional[Union[str, List[str]]]
106
- A string or list of strings representing column names that contain features.
107
- If this parameter is not specified, all columns in the input DataFrame except
108
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
109
- parameters are considered input columns.
110
-
111
- label_cols: Optional[Union[str, List[str]]]
112
- A string or list of strings representing column names that contain labels.
113
- This is a required param for estimators, as there is no way to infer these
114
- columns. If this parameter is not specified, then object is fitted without
115
- labels (like a transformer).
116
-
117
- output_cols: Optional[Union[str, List[str]]]
118
- A string or list of strings representing column names that will store the
119
- output of predict and transform operations. The length of output_cols must
120
- match the expected number of output columns from the specific estimator or
121
- transformer class used.
122
- If this parameter is not specified, output column names are derived by
123
- adding an OUTPUT_ prefix to the label column names. These inferred output
124
- column names work for estimator's predict() method, but output_cols must
125
- be set explicitly for transformers.
126
-
127
- sample_weight_col: Optional[str]
128
- A string representing the column name containing the sample weights.
129
- This argument is only required when working with weighted datasets.
130
-
131
- passthrough_cols: Optional[Union[str, List[str]]]
132
- A string or a list of strings indicating column names to be excluded from any
133
- operations (such as train, transform, or inference). These specified column(s)
134
- will remain untouched throughout the process. This option is helpful in scenarios
135
- requiring automatic input_cols inference, but need to avoid using specific
136
- columns, like index columns, during training or inference.
137
-
138
- drop_input_cols: Optional[bool], default=False
139
- If set, the response of predict(), transform() methods will not contain input columns.
140
148
  """
141
149
 
142
150
  def __init__( # type: ignore[no-untyped-def]
@@ -165,7 +173,7 @@ class Nystroem(BaseTransformer):
165
173
  self.set_passthrough_cols(passthrough_cols)
166
174
  self.set_drop_input_cols(drop_input_cols)
167
175
  self.set_sample_weight_col(sample_weight_col)
168
- deps = set(SklearnWrapperProvider().dependencies)
176
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
169
177
 
170
178
  self._deps = list(deps)
171
179
 
@@ -181,13 +189,14 @@ class Nystroem(BaseTransformer):
181
189
  args=init_args,
182
190
  klass=sklearn.kernel_approximation.Nystroem
183
191
  )
184
- self._sklearn_object = sklearn.kernel_approximation.Nystroem(
192
+ self._sklearn_object: Any = sklearn.kernel_approximation.Nystroem(
185
193
  **cleaned_up_init_args,
186
194
  )
187
195
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
188
196
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
189
197
  self._snowpark_cols: Optional[List[str]] = self.input_cols
190
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
198
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
199
+ self._autogenerated = True
191
200
 
192
201
  def _get_rand_id(self) -> str:
193
202
  """
@@ -243,54 +252,48 @@ class Nystroem(BaseTransformer):
243
252
  self
244
253
  """
245
254
  self._infer_input_output_cols(dataset)
246
- if isinstance(dataset, pd.DataFrame):
247
- assert self._sklearn_object is not None # keep mypy happy
248
- self._sklearn_object = self._handlers.fit_pandas(
249
- dataset,
250
- self._sklearn_object,
251
- self.input_cols,
252
- self.label_cols,
253
- self.sample_weight_col
254
- )
255
- elif isinstance(dataset, DataFrame):
256
- self._fit_snowpark(dataset)
257
- else:
258
- raise TypeError(
259
- f"Unexpected dataset type: {type(dataset)}."
260
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
261
- )
255
+ if isinstance(dataset, DataFrame):
256
+ session = dataset._session
257
+ assert session is not None # keep mypy happy
258
+ # Validate that key package version in user workspace are supported in snowflake conda channel
259
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
260
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
261
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
262
+
263
+ # Specify input columns so column pruning will be enforced
264
+ selected_cols = self._get_active_columns()
265
+ if len(selected_cols) > 0:
266
+ dataset = dataset.select(selected_cols)
267
+
268
+ self._snowpark_cols = dataset.select(self.input_cols).columns
269
+
270
+ # If we are already in a stored procedure, no need to kick off another one.
271
+ if SNOWML_SPROC_ENV in os.environ:
272
+ statement_params = telemetry.get_function_usage_statement_params(
273
+ project=_PROJECT,
274
+ subproject=_SUBPROJECT,
275
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Nystroem.__class__.__name__),
276
+ api_calls=[Session.call],
277
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
278
+ )
279
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
280
+ pd_df.columns = dataset.columns
281
+ dataset = pd_df
282
+
283
+ model_trainer = ModelTrainerBuilder.build(
284
+ estimator=self._sklearn_object,
285
+ dataset=dataset,
286
+ input_cols=self.input_cols,
287
+ label_cols=self.label_cols,
288
+ sample_weight_col=self.sample_weight_col,
289
+ autogenerated=self._autogenerated,
290
+ subproject=_SUBPROJECT
291
+ )
292
+ self._sklearn_object = model_trainer.train()
262
293
  self._is_fitted = True
263
294
  self._get_model_signatures(dataset)
264
295
  return self
265
296
 
266
- def _fit_snowpark(self, dataset: DataFrame) -> None:
267
- session = dataset._session
268
- assert session is not None # keep mypy happy
269
- # Validate that key package version in user workspace are supported in snowflake conda channel
270
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
271
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
272
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
273
-
274
- # Specify input columns so column pruning will be enforced
275
- selected_cols = self._get_active_columns()
276
- if len(selected_cols) > 0:
277
- dataset = dataset.select(selected_cols)
278
-
279
- estimator = self._sklearn_object
280
- assert estimator is not None # Keep mypy happy
281
-
282
- self._snowpark_cols = dataset.select(self.input_cols).columns
283
-
284
- self._sklearn_object = self._handlers.fit_snowpark(
285
- dataset,
286
- session,
287
- estimator,
288
- ["snowflake-snowpark-python"] + self._get_dependencies(),
289
- self.input_cols,
290
- self.label_cols,
291
- self.sample_weight_col,
292
- )
293
-
294
297
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
295
298
  if self._drop_input_cols:
296
299
  return []
@@ -478,11 +481,6 @@ class Nystroem(BaseTransformer):
478
481
  subproject=_SUBPROJECT,
479
482
  custom_tags=dict([("autogen", True)]),
480
483
  )
481
- @telemetry.add_stmt_params_to_df(
482
- project=_PROJECT,
483
- subproject=_SUBPROJECT,
484
- custom_tags=dict([("autogen", True)]),
485
- )
486
484
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
487
485
  """Method not supported for this class.
488
486
 
@@ -534,11 +532,6 @@ class Nystroem(BaseTransformer):
534
532
  subproject=_SUBPROJECT,
535
533
  custom_tags=dict([("autogen", True)]),
536
534
  )
537
- @telemetry.add_stmt_params_to_df(
538
- project=_PROJECT,
539
- subproject=_SUBPROJECT,
540
- custom_tags=dict([("autogen", True)]),
541
- )
542
535
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
543
536
  """Apply feature map to X
544
537
  For more details on this function, see [sklearn.kernel_approximation.Nystroem.transform]
@@ -597,7 +590,8 @@ class Nystroem(BaseTransformer):
597
590
  if False:
598
591
  self.fit(dataset)
599
592
  assert self._sklearn_object is not None
600
- return self._sklearn_object.labels_
593
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
594
+ return labels
601
595
  else:
602
596
  raise NotImplementedError
603
597
 
@@ -633,6 +627,7 @@ class Nystroem(BaseTransformer):
633
627
  output_cols = []
634
628
 
635
629
  # Make sure column names are valid snowflake identifiers.
630
+ assert output_cols is not None # Make MyPy happy
636
631
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
637
632
 
638
633
  return rv
@@ -643,11 +638,6 @@ class Nystroem(BaseTransformer):
643
638
  subproject=_SUBPROJECT,
644
639
  custom_tags=dict([("autogen", True)]),
645
640
  )
646
- @telemetry.add_stmt_params_to_df(
647
- project=_PROJECT,
648
- subproject=_SUBPROJECT,
649
- custom_tags=dict([("autogen", True)]),
650
- )
651
641
  def predict_proba(
652
642
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
653
643
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -688,11 +678,6 @@ class Nystroem(BaseTransformer):
688
678
  subproject=_SUBPROJECT,
689
679
  custom_tags=dict([("autogen", True)]),
690
680
  )
691
- @telemetry.add_stmt_params_to_df(
692
- project=_PROJECT,
693
- subproject=_SUBPROJECT,
694
- custom_tags=dict([("autogen", True)]),
695
- )
696
681
  def predict_log_proba(
697
682
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
698
683
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -729,16 +714,6 @@ class Nystroem(BaseTransformer):
729
714
  return output_df
730
715
 
731
716
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
732
- @telemetry.send_api_usage_telemetry(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
- @telemetry.add_stmt_params_to_df(
738
- project=_PROJECT,
739
- subproject=_SUBPROJECT,
740
- custom_tags=dict([("autogen", True)]),
741
- )
742
717
  def decision_function(
743
718
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
744
719
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -837,11 +812,6 @@ class Nystroem(BaseTransformer):
837
812
  subproject=_SUBPROJECT,
838
813
  custom_tags=dict([("autogen", True)]),
839
814
  )
840
- @telemetry.add_stmt_params_to_df(
841
- project=_PROJECT,
842
- subproject=_SUBPROJECT,
843
- custom_tags=dict([("autogen", True)]),
844
- )
845
815
  def kneighbors(
846
816
  self,
847
817
  dataset: Union[DataFrame, pd.DataFrame],
@@ -901,9 +871,9 @@ class Nystroem(BaseTransformer):
901
871
  # For classifier, the type of predict is the same as the type of label
902
872
  if self._sklearn_object._estimator_type == 'classifier':
903
873
  # label columns is the desired type for output
904
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
874
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
905
875
  # rename the output columns
906
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
876
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
907
877
  self._model_signature_dict["predict"] = ModelSignature(inputs,
908
878
  ([] if self._drop_input_cols else inputs)
909
879
  + outputs)