snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PolynomialCountSketch(BaseTransformer):
|
57
58
|
r"""Polynomial kernel approximation via Tensor Sketch
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.PolynomialCountSketch]
|
@@ -60,6 +61,49 @@ class PolynomialCountSketch(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
gamma: float, default=1.0
|
64
108
|
Parameter of the polynomial kernel whose feature map
|
65
109
|
will be approximated.
|
@@ -83,42 +127,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
83
127
|
Determines random number generation for indexHash and bitHash
|
84
128
|
initialization. Pass an int for reproducible results across multiple
|
85
129
|
function calls. See :term:`Glossary <random_state>`.
|
86
|
-
|
87
|
-
input_cols: Optional[Union[str, List[str]]]
|
88
|
-
A string or list of strings representing column names that contain features.
|
89
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
90
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
91
|
-
parameters are considered input columns.
|
92
|
-
|
93
|
-
label_cols: Optional[Union[str, List[str]]]
|
94
|
-
A string or list of strings representing column names that contain labels.
|
95
|
-
This is a required param for estimators, as there is no way to infer these
|
96
|
-
columns. If this parameter is not specified, then object is fitted without
|
97
|
-
labels (like a transformer).
|
98
|
-
|
99
|
-
output_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that will store the
|
101
|
-
output of predict and transform operations. The length of output_cols must
|
102
|
-
match the expected number of output columns from the specific estimator or
|
103
|
-
transformer class used.
|
104
|
-
If this parameter is not specified, output column names are derived by
|
105
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
106
|
-
column names work for estimator's predict() method, but output_cols must
|
107
|
-
be set explicitly for transformers.
|
108
|
-
|
109
|
-
sample_weight_col: Optional[str]
|
110
|
-
A string representing the column name containing the sample weights.
|
111
|
-
This argument is only required when working with weighted datasets.
|
112
|
-
|
113
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or a list of strings indicating column names to be excluded from any
|
115
|
-
operations (such as train, transform, or inference). These specified column(s)
|
116
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
117
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
118
|
-
columns, like index columns, during training or inference.
|
119
|
-
|
120
|
-
drop_input_cols: Optional[bool], default=False
|
121
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
122
130
|
"""
|
123
131
|
|
124
132
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -144,7 +152,7 @@ class PolynomialCountSketch(BaseTransformer):
|
|
144
152
|
self.set_passthrough_cols(passthrough_cols)
|
145
153
|
self.set_drop_input_cols(drop_input_cols)
|
146
154
|
self.set_sample_weight_col(sample_weight_col)
|
147
|
-
deps = set(
|
155
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
148
156
|
|
149
157
|
self._deps = list(deps)
|
150
158
|
|
@@ -157,13 +165,14 @@ class PolynomialCountSketch(BaseTransformer):
|
|
157
165
|
args=init_args,
|
158
166
|
klass=sklearn.kernel_approximation.PolynomialCountSketch
|
159
167
|
)
|
160
|
-
self._sklearn_object = sklearn.kernel_approximation.PolynomialCountSketch(
|
168
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.PolynomialCountSketch(
|
161
169
|
**cleaned_up_init_args,
|
162
170
|
)
|
163
171
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
164
172
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
165
173
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
166
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
174
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PolynomialCountSketch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
175
|
+
self._autogenerated = True
|
167
176
|
|
168
177
|
def _get_rand_id(self) -> str:
|
169
178
|
"""
|
@@ -219,54 +228,48 @@ class PolynomialCountSketch(BaseTransformer):
|
|
219
228
|
self
|
220
229
|
"""
|
221
230
|
self._infer_input_output_cols(dataset)
|
222
|
-
if isinstance(dataset,
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
self.
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
231
|
+
if isinstance(dataset, DataFrame):
|
232
|
+
session = dataset._session
|
233
|
+
assert session is not None # keep mypy happy
|
234
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
235
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
236
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
237
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
238
|
+
|
239
|
+
# Specify input columns so column pruning will be enforced
|
240
|
+
selected_cols = self._get_active_columns()
|
241
|
+
if len(selected_cols) > 0:
|
242
|
+
dataset = dataset.select(selected_cols)
|
243
|
+
|
244
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
245
|
+
|
246
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
247
|
+
if SNOWML_SPROC_ENV in os.environ:
|
248
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
249
|
+
project=_PROJECT,
|
250
|
+
subproject=_SUBPROJECT,
|
251
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialCountSketch.__class__.__name__),
|
252
|
+
api_calls=[Session.call],
|
253
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
254
|
+
)
|
255
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
256
|
+
pd_df.columns = dataset.columns
|
257
|
+
dataset = pd_df
|
258
|
+
|
259
|
+
model_trainer = ModelTrainerBuilder.build(
|
260
|
+
estimator=self._sklearn_object,
|
261
|
+
dataset=dataset,
|
262
|
+
input_cols=self.input_cols,
|
263
|
+
label_cols=self.label_cols,
|
264
|
+
sample_weight_col=self.sample_weight_col,
|
265
|
+
autogenerated=self._autogenerated,
|
266
|
+
subproject=_SUBPROJECT
|
267
|
+
)
|
268
|
+
self._sklearn_object = model_trainer.train()
|
238
269
|
self._is_fitted = True
|
239
270
|
self._get_model_signatures(dataset)
|
240
271
|
return self
|
241
272
|
|
242
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
243
|
-
session = dataset._session
|
244
|
-
assert session is not None # keep mypy happy
|
245
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
246
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
247
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
248
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
249
|
-
|
250
|
-
# Specify input columns so column pruning will be enforced
|
251
|
-
selected_cols = self._get_active_columns()
|
252
|
-
if len(selected_cols) > 0:
|
253
|
-
dataset = dataset.select(selected_cols)
|
254
|
-
|
255
|
-
estimator = self._sklearn_object
|
256
|
-
assert estimator is not None # Keep mypy happy
|
257
|
-
|
258
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
259
|
-
|
260
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
261
|
-
dataset,
|
262
|
-
session,
|
263
|
-
estimator,
|
264
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
265
|
-
self.input_cols,
|
266
|
-
self.label_cols,
|
267
|
-
self.sample_weight_col,
|
268
|
-
)
|
269
|
-
|
270
273
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
271
274
|
if self._drop_input_cols:
|
272
275
|
return []
|
@@ -454,11 +457,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
454
457
|
subproject=_SUBPROJECT,
|
455
458
|
custom_tags=dict([("autogen", True)]),
|
456
459
|
)
|
457
|
-
@telemetry.add_stmt_params_to_df(
|
458
|
-
project=_PROJECT,
|
459
|
-
subproject=_SUBPROJECT,
|
460
|
-
custom_tags=dict([("autogen", True)]),
|
461
|
-
)
|
462
460
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
463
461
|
"""Method not supported for this class.
|
464
462
|
|
@@ -510,11 +508,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
510
508
|
subproject=_SUBPROJECT,
|
511
509
|
custom_tags=dict([("autogen", True)]),
|
512
510
|
)
|
513
|
-
@telemetry.add_stmt_params_to_df(
|
514
|
-
project=_PROJECT,
|
515
|
-
subproject=_SUBPROJECT,
|
516
|
-
custom_tags=dict([("autogen", True)]),
|
517
|
-
)
|
518
511
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
519
512
|
"""Generate the feature map approximation for X
|
520
513
|
For more details on this function, see [sklearn.kernel_approximation.PolynomialCountSketch.transform]
|
@@ -573,7 +566,8 @@ class PolynomialCountSketch(BaseTransformer):
|
|
573
566
|
if False:
|
574
567
|
self.fit(dataset)
|
575
568
|
assert self._sklearn_object is not None
|
576
|
-
|
569
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
570
|
+
return labels
|
577
571
|
else:
|
578
572
|
raise NotImplementedError
|
579
573
|
|
@@ -609,6 +603,7 @@ class PolynomialCountSketch(BaseTransformer):
|
|
609
603
|
output_cols = []
|
610
604
|
|
611
605
|
# Make sure column names are valid snowflake identifiers.
|
606
|
+
assert output_cols is not None # Make MyPy happy
|
612
607
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
613
608
|
|
614
609
|
return rv
|
@@ -619,11 +614,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
619
614
|
subproject=_SUBPROJECT,
|
620
615
|
custom_tags=dict([("autogen", True)]),
|
621
616
|
)
|
622
|
-
@telemetry.add_stmt_params_to_df(
|
623
|
-
project=_PROJECT,
|
624
|
-
subproject=_SUBPROJECT,
|
625
|
-
custom_tags=dict([("autogen", True)]),
|
626
|
-
)
|
627
617
|
def predict_proba(
|
628
618
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
629
619
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -664,11 +654,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
664
654
|
subproject=_SUBPROJECT,
|
665
655
|
custom_tags=dict([("autogen", True)]),
|
666
656
|
)
|
667
|
-
@telemetry.add_stmt_params_to_df(
|
668
|
-
project=_PROJECT,
|
669
|
-
subproject=_SUBPROJECT,
|
670
|
-
custom_tags=dict([("autogen", True)]),
|
671
|
-
)
|
672
657
|
def predict_log_proba(
|
673
658
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
674
659
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -705,16 +690,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
705
690
|
return output_df
|
706
691
|
|
707
692
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
708
|
-
@telemetry.send_api_usage_telemetry(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
|
-
@telemetry.add_stmt_params_to_df(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
693
|
def decision_function(
|
719
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
720
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -813,11 +788,6 @@ class PolynomialCountSketch(BaseTransformer):
|
|
813
788
|
subproject=_SUBPROJECT,
|
814
789
|
custom_tags=dict([("autogen", True)]),
|
815
790
|
)
|
816
|
-
@telemetry.add_stmt_params_to_df(
|
817
|
-
project=_PROJECT,
|
818
|
-
subproject=_SUBPROJECT,
|
819
|
-
custom_tags=dict([("autogen", True)]),
|
820
|
-
)
|
821
791
|
def kneighbors(
|
822
792
|
self,
|
823
793
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -877,9 +847,9 @@ class PolynomialCountSketch(BaseTransformer):
|
|
877
847
|
# For classifier, the type of predict is the same as the type of label
|
878
848
|
if self._sklearn_object._estimator_type == 'classifier':
|
879
849
|
# label columns is the desired type for output
|
880
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
850
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
881
851
|
# rename the output columns
|
882
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
852
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
883
853
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
884
854
|
([] if self._drop_input_cols else inputs)
|
885
855
|
+ outputs)
|