snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AgglomerativeClustering(BaseTransformer):
57
58
  r"""Agglomerative Clustering
58
59
  For more details on this class, see [sklearn.cluster.AgglomerativeClustering]
@@ -60,6 +61,49 @@ class AgglomerativeClustering(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int or None, default=2
64
108
  The number of clusters to find. It must be ``None`` if
65
109
  ``distance_threshold`` is not ``None``.
@@ -127,42 +171,6 @@ class AgglomerativeClustering(BaseTransformer):
127
171
  Computes distances between clusters even if `distance_threshold` is not
128
172
  used. This can be used to make dendrogram visualization, but introduces
129
173
  a computational and memory overhead.
130
-
131
- input_cols: Optional[Union[str, List[str]]]
132
- A string or list of strings representing column names that contain features.
133
- If this parameter is not specified, all columns in the input DataFrame except
134
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
135
- parameters are considered input columns.
136
-
137
- label_cols: Optional[Union[str, List[str]]]
138
- A string or list of strings representing column names that contain labels.
139
- This is a required param for estimators, as there is no way to infer these
140
- columns. If this parameter is not specified, then object is fitted without
141
- labels (like a transformer).
142
-
143
- output_cols: Optional[Union[str, List[str]]]
144
- A string or list of strings representing column names that will store the
145
- output of predict and transform operations. The length of output_cols must
146
- match the expected number of output columns from the specific estimator or
147
- transformer class used.
148
- If this parameter is not specified, output column names are derived by
149
- adding an OUTPUT_ prefix to the label column names. These inferred output
150
- column names work for estimator's predict() method, but output_cols must
151
- be set explicitly for transformers.
152
-
153
- sample_weight_col: Optional[str]
154
- A string representing the column name containing the sample weights.
155
- This argument is only required when working with weighted datasets.
156
-
157
- passthrough_cols: Optional[Union[str, List[str]]]
158
- A string or a list of strings indicating column names to be excluded from any
159
- operations (such as train, transform, or inference). These specified column(s)
160
- will remain untouched throughout the process. This option is helpful in scenarios
161
- requiring automatic input_cols inference, but need to avoid using specific
162
- columns, like index columns, during training or inference.
163
-
164
- drop_input_cols: Optional[bool], default=False
165
- If set, the response of predict(), transform() methods will not contain input columns.
166
174
  """
167
175
 
168
176
  def __init__( # type: ignore[no-untyped-def]
@@ -192,7 +200,7 @@ class AgglomerativeClustering(BaseTransformer):
192
200
  self.set_passthrough_cols(passthrough_cols)
193
201
  self.set_drop_input_cols(drop_input_cols)
194
202
  self.set_sample_weight_col(sample_weight_col)
195
- deps = set(SklearnWrapperProvider().dependencies)
203
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
196
204
 
197
205
  self._deps = list(deps)
198
206
 
@@ -209,13 +217,14 @@ class AgglomerativeClustering(BaseTransformer):
209
217
  args=init_args,
210
218
  klass=sklearn.cluster.AgglomerativeClustering
211
219
  )
212
- self._sklearn_object = sklearn.cluster.AgglomerativeClustering(
220
+ self._sklearn_object: Any = sklearn.cluster.AgglomerativeClustering(
213
221
  **cleaned_up_init_args,
214
222
  )
215
223
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
216
224
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
217
225
  self._snowpark_cols: Optional[List[str]] = self.input_cols
218
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
226
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
227
+ self._autogenerated = True
219
228
 
220
229
  def _get_rand_id(self) -> str:
221
230
  """
@@ -271,54 +280,48 @@ class AgglomerativeClustering(BaseTransformer):
271
280
  self
272
281
  """
273
282
  self._infer_input_output_cols(dataset)
274
- if isinstance(dataset, pd.DataFrame):
275
- assert self._sklearn_object is not None # keep mypy happy
276
- self._sklearn_object = self._handlers.fit_pandas(
277
- dataset,
278
- self._sklearn_object,
279
- self.input_cols,
280
- self.label_cols,
281
- self.sample_weight_col
282
- )
283
- elif isinstance(dataset, DataFrame):
284
- self._fit_snowpark(dataset)
285
- else:
286
- raise TypeError(
287
- f"Unexpected dataset type: {type(dataset)}."
288
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
289
- )
283
+ if isinstance(dataset, DataFrame):
284
+ session = dataset._session
285
+ assert session is not None # keep mypy happy
286
+ # Validate that key package version in user workspace are supported in snowflake conda channel
287
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
288
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
289
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
290
+
291
+ # Specify input columns so column pruning will be enforced
292
+ selected_cols = self._get_active_columns()
293
+ if len(selected_cols) > 0:
294
+ dataset = dataset.select(selected_cols)
295
+
296
+ self._snowpark_cols = dataset.select(self.input_cols).columns
297
+
298
+ # If we are already in a stored procedure, no need to kick off another one.
299
+ if SNOWML_SPROC_ENV in os.environ:
300
+ statement_params = telemetry.get_function_usage_statement_params(
301
+ project=_PROJECT,
302
+ subproject=_SUBPROJECT,
303
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AgglomerativeClustering.__class__.__name__),
304
+ api_calls=[Session.call],
305
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
+ )
307
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
308
+ pd_df.columns = dataset.columns
309
+ dataset = pd_df
310
+
311
+ model_trainer = ModelTrainerBuilder.build(
312
+ estimator=self._sklearn_object,
313
+ dataset=dataset,
314
+ input_cols=self.input_cols,
315
+ label_cols=self.label_cols,
316
+ sample_weight_col=self.sample_weight_col,
317
+ autogenerated=self._autogenerated,
318
+ subproject=_SUBPROJECT
319
+ )
320
+ self._sklearn_object = model_trainer.train()
290
321
  self._is_fitted = True
291
322
  self._get_model_signatures(dataset)
292
323
  return self
293
324
 
294
- def _fit_snowpark(self, dataset: DataFrame) -> None:
295
- session = dataset._session
296
- assert session is not None # keep mypy happy
297
- # Validate that key package version in user workspace are supported in snowflake conda channel
298
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
299
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
300
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
301
-
302
- # Specify input columns so column pruning will be enforced
303
- selected_cols = self._get_active_columns()
304
- if len(selected_cols) > 0:
305
- dataset = dataset.select(selected_cols)
306
-
307
- estimator = self._sklearn_object
308
- assert estimator is not None # Keep mypy happy
309
-
310
- self._snowpark_cols = dataset.select(self.input_cols).columns
311
-
312
- self._sklearn_object = self._handlers.fit_snowpark(
313
- dataset,
314
- session,
315
- estimator,
316
- ["snowflake-snowpark-python"] + self._get_dependencies(),
317
- self.input_cols,
318
- self.label_cols,
319
- self.sample_weight_col,
320
- )
321
-
322
325
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
323
326
  if self._drop_input_cols:
324
327
  return []
@@ -506,11 +509,6 @@ class AgglomerativeClustering(BaseTransformer):
506
509
  subproject=_SUBPROJECT,
507
510
  custom_tags=dict([("autogen", True)]),
508
511
  )
509
- @telemetry.add_stmt_params_to_df(
510
- project=_PROJECT,
511
- subproject=_SUBPROJECT,
512
- custom_tags=dict([("autogen", True)]),
513
- )
514
512
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
515
513
  """Method not supported for this class.
516
514
 
@@ -562,11 +560,6 @@ class AgglomerativeClustering(BaseTransformer):
562
560
  subproject=_SUBPROJECT,
563
561
  custom_tags=dict([("autogen", True)]),
564
562
  )
565
- @telemetry.add_stmt_params_to_df(
566
- project=_PROJECT,
567
- subproject=_SUBPROJECT,
568
- custom_tags=dict([("autogen", True)]),
569
- )
570
563
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
571
564
  """Method not supported for this class.
572
565
 
@@ -625,7 +618,8 @@ class AgglomerativeClustering(BaseTransformer):
625
618
  if True:
626
619
  self.fit(dataset)
627
620
  assert self._sklearn_object is not None
628
- return self._sklearn_object.labels_
621
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
622
+ return labels
629
623
  else:
630
624
  raise NotImplementedError
631
625
 
@@ -661,6 +655,7 @@ class AgglomerativeClustering(BaseTransformer):
661
655
  output_cols = []
662
656
 
663
657
  # Make sure column names are valid snowflake identifiers.
658
+ assert output_cols is not None # Make MyPy happy
664
659
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
665
660
 
666
661
  return rv
@@ -671,11 +666,6 @@ class AgglomerativeClustering(BaseTransformer):
671
666
  subproject=_SUBPROJECT,
672
667
  custom_tags=dict([("autogen", True)]),
673
668
  )
674
- @telemetry.add_stmt_params_to_df(
675
- project=_PROJECT,
676
- subproject=_SUBPROJECT,
677
- custom_tags=dict([("autogen", True)]),
678
- )
679
669
  def predict_proba(
680
670
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
681
671
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -716,11 +706,6 @@ class AgglomerativeClustering(BaseTransformer):
716
706
  subproject=_SUBPROJECT,
717
707
  custom_tags=dict([("autogen", True)]),
718
708
  )
719
- @telemetry.add_stmt_params_to_df(
720
- project=_PROJECT,
721
- subproject=_SUBPROJECT,
722
- custom_tags=dict([("autogen", True)]),
723
- )
724
709
  def predict_log_proba(
725
710
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
726
711
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -757,16 +742,6 @@ class AgglomerativeClustering(BaseTransformer):
757
742
  return output_df
758
743
 
759
744
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
760
- @telemetry.send_api_usage_telemetry(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
- @telemetry.add_stmt_params_to_df(
766
- project=_PROJECT,
767
- subproject=_SUBPROJECT,
768
- custom_tags=dict([("autogen", True)]),
769
- )
770
745
  def decision_function(
771
746
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
772
747
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -865,11 +840,6 @@ class AgglomerativeClustering(BaseTransformer):
865
840
  subproject=_SUBPROJECT,
866
841
  custom_tags=dict([("autogen", True)]),
867
842
  )
868
- @telemetry.add_stmt_params_to_df(
869
- project=_PROJECT,
870
- subproject=_SUBPROJECT,
871
- custom_tags=dict([("autogen", True)]),
872
- )
873
843
  def kneighbors(
874
844
  self,
875
845
  dataset: Union[DataFrame, pd.DataFrame],
@@ -929,9 +899,9 @@ class AgglomerativeClustering(BaseTransformer):
929
899
  # For classifier, the type of predict is the same as the type of label
930
900
  if self._sklearn_object._estimator_type == 'classifier':
931
901
  # label columns is the desired type for output
932
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
902
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
933
903
  # rename the output columns
934
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
904
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
935
905
  self._model_signature_dict["predict"] = ModelSignature(inputs,
936
906
  ([] if self._drop_input_cols else inputs)
937
907
  + outputs)