snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AgglomerativeClustering(BaseTransformer):
|
57
58
|
r"""Agglomerative Clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.AgglomerativeClustering]
|
@@ -60,6 +61,49 @@ class AgglomerativeClustering(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int or None, default=2
|
64
108
|
The number of clusters to find. It must be ``None`` if
|
65
109
|
``distance_threshold`` is not ``None``.
|
@@ -127,42 +171,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
127
171
|
Computes distances between clusters even if `distance_threshold` is not
|
128
172
|
used. This can be used to make dendrogram visualization, but introduces
|
129
173
|
a computational and memory overhead.
|
130
|
-
|
131
|
-
input_cols: Optional[Union[str, List[str]]]
|
132
|
-
A string or list of strings representing column names that contain features.
|
133
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
134
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
135
|
-
parameters are considered input columns.
|
136
|
-
|
137
|
-
label_cols: Optional[Union[str, List[str]]]
|
138
|
-
A string or list of strings representing column names that contain labels.
|
139
|
-
This is a required param for estimators, as there is no way to infer these
|
140
|
-
columns. If this parameter is not specified, then object is fitted without
|
141
|
-
labels (like a transformer).
|
142
|
-
|
143
|
-
output_cols: Optional[Union[str, List[str]]]
|
144
|
-
A string or list of strings representing column names that will store the
|
145
|
-
output of predict and transform operations. The length of output_cols must
|
146
|
-
match the expected number of output columns from the specific estimator or
|
147
|
-
transformer class used.
|
148
|
-
If this parameter is not specified, output column names are derived by
|
149
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
150
|
-
column names work for estimator's predict() method, but output_cols must
|
151
|
-
be set explicitly for transformers.
|
152
|
-
|
153
|
-
sample_weight_col: Optional[str]
|
154
|
-
A string representing the column name containing the sample weights.
|
155
|
-
This argument is only required when working with weighted datasets.
|
156
|
-
|
157
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
158
|
-
A string or a list of strings indicating column names to be excluded from any
|
159
|
-
operations (such as train, transform, or inference). These specified column(s)
|
160
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
161
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
162
|
-
columns, like index columns, during training or inference.
|
163
|
-
|
164
|
-
drop_input_cols: Optional[bool], default=False
|
165
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
166
174
|
"""
|
167
175
|
|
168
176
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -192,7 +200,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
192
200
|
self.set_passthrough_cols(passthrough_cols)
|
193
201
|
self.set_drop_input_cols(drop_input_cols)
|
194
202
|
self.set_sample_weight_col(sample_weight_col)
|
195
|
-
deps = set(
|
203
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
196
204
|
|
197
205
|
self._deps = list(deps)
|
198
206
|
|
@@ -209,13 +217,14 @@ class AgglomerativeClustering(BaseTransformer):
|
|
209
217
|
args=init_args,
|
210
218
|
klass=sklearn.cluster.AgglomerativeClustering
|
211
219
|
)
|
212
|
-
self._sklearn_object = sklearn.cluster.AgglomerativeClustering(
|
220
|
+
self._sklearn_object: Any = sklearn.cluster.AgglomerativeClustering(
|
213
221
|
**cleaned_up_init_args,
|
214
222
|
)
|
215
223
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
216
224
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
217
225
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
218
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
226
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AgglomerativeClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
227
|
+
self._autogenerated = True
|
219
228
|
|
220
229
|
def _get_rand_id(self) -> str:
|
221
230
|
"""
|
@@ -271,54 +280,48 @@ class AgglomerativeClustering(BaseTransformer):
|
|
271
280
|
self
|
272
281
|
"""
|
273
282
|
self._infer_input_output_cols(dataset)
|
274
|
-
if isinstance(dataset,
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
self.
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
283
|
+
if isinstance(dataset, DataFrame):
|
284
|
+
session = dataset._session
|
285
|
+
assert session is not None # keep mypy happy
|
286
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
287
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
288
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
289
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
290
|
+
|
291
|
+
# Specify input columns so column pruning will be enforced
|
292
|
+
selected_cols = self._get_active_columns()
|
293
|
+
if len(selected_cols) > 0:
|
294
|
+
dataset = dataset.select(selected_cols)
|
295
|
+
|
296
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
|
+
|
298
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
|
+
if SNOWML_SPROC_ENV in os.environ:
|
300
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
301
|
+
project=_PROJECT,
|
302
|
+
subproject=_SUBPROJECT,
|
303
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AgglomerativeClustering.__class__.__name__),
|
304
|
+
api_calls=[Session.call],
|
305
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
|
+
)
|
307
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
308
|
+
pd_df.columns = dataset.columns
|
309
|
+
dataset = pd_df
|
310
|
+
|
311
|
+
model_trainer = ModelTrainerBuilder.build(
|
312
|
+
estimator=self._sklearn_object,
|
313
|
+
dataset=dataset,
|
314
|
+
input_cols=self.input_cols,
|
315
|
+
label_cols=self.label_cols,
|
316
|
+
sample_weight_col=self.sample_weight_col,
|
317
|
+
autogenerated=self._autogenerated,
|
318
|
+
subproject=_SUBPROJECT
|
319
|
+
)
|
320
|
+
self._sklearn_object = model_trainer.train()
|
290
321
|
self._is_fitted = True
|
291
322
|
self._get_model_signatures(dataset)
|
292
323
|
return self
|
293
324
|
|
294
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
295
|
-
session = dataset._session
|
296
|
-
assert session is not None # keep mypy happy
|
297
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
-
|
302
|
-
# Specify input columns so column pruning will be enforced
|
303
|
-
selected_cols = self._get_active_columns()
|
304
|
-
if len(selected_cols) > 0:
|
305
|
-
dataset = dataset.select(selected_cols)
|
306
|
-
|
307
|
-
estimator = self._sklearn_object
|
308
|
-
assert estimator is not None # Keep mypy happy
|
309
|
-
|
310
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
311
|
-
|
312
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
313
|
-
dataset,
|
314
|
-
session,
|
315
|
-
estimator,
|
316
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
317
|
-
self.input_cols,
|
318
|
-
self.label_cols,
|
319
|
-
self.sample_weight_col,
|
320
|
-
)
|
321
|
-
|
322
325
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
323
326
|
if self._drop_input_cols:
|
324
327
|
return []
|
@@ -506,11 +509,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
506
509
|
subproject=_SUBPROJECT,
|
507
510
|
custom_tags=dict([("autogen", True)]),
|
508
511
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
512
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
513
|
"""Method not supported for this class.
|
516
514
|
|
@@ -562,11 +560,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
562
560
|
subproject=_SUBPROJECT,
|
563
561
|
custom_tags=dict([("autogen", True)]),
|
564
562
|
)
|
565
|
-
@telemetry.add_stmt_params_to_df(
|
566
|
-
project=_PROJECT,
|
567
|
-
subproject=_SUBPROJECT,
|
568
|
-
custom_tags=dict([("autogen", True)]),
|
569
|
-
)
|
570
563
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
571
564
|
"""Method not supported for this class.
|
572
565
|
|
@@ -625,7 +618,8 @@ class AgglomerativeClustering(BaseTransformer):
|
|
625
618
|
if True:
|
626
619
|
self.fit(dataset)
|
627
620
|
assert self._sklearn_object is not None
|
628
|
-
|
621
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
622
|
+
return labels
|
629
623
|
else:
|
630
624
|
raise NotImplementedError
|
631
625
|
|
@@ -661,6 +655,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
661
655
|
output_cols = []
|
662
656
|
|
663
657
|
# Make sure column names are valid snowflake identifiers.
|
658
|
+
assert output_cols is not None # Make MyPy happy
|
664
659
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
665
660
|
|
666
661
|
return rv
|
@@ -671,11 +666,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
671
666
|
subproject=_SUBPROJECT,
|
672
667
|
custom_tags=dict([("autogen", True)]),
|
673
668
|
)
|
674
|
-
@telemetry.add_stmt_params_to_df(
|
675
|
-
project=_PROJECT,
|
676
|
-
subproject=_SUBPROJECT,
|
677
|
-
custom_tags=dict([("autogen", True)]),
|
678
|
-
)
|
679
669
|
def predict_proba(
|
680
670
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
681
671
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -716,11 +706,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
716
706
|
subproject=_SUBPROJECT,
|
717
707
|
custom_tags=dict([("autogen", True)]),
|
718
708
|
)
|
719
|
-
@telemetry.add_stmt_params_to_df(
|
720
|
-
project=_PROJECT,
|
721
|
-
subproject=_SUBPROJECT,
|
722
|
-
custom_tags=dict([("autogen", True)]),
|
723
|
-
)
|
724
709
|
def predict_log_proba(
|
725
710
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
726
711
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -757,16 +742,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
757
742
|
return output_df
|
758
743
|
|
759
744
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
760
|
-
@telemetry.send_api_usage_telemetry(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
|
-
@telemetry.add_stmt_params_to_df(
|
766
|
-
project=_PROJECT,
|
767
|
-
subproject=_SUBPROJECT,
|
768
|
-
custom_tags=dict([("autogen", True)]),
|
769
|
-
)
|
770
745
|
def decision_function(
|
771
746
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
772
747
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -865,11 +840,6 @@ class AgglomerativeClustering(BaseTransformer):
|
|
865
840
|
subproject=_SUBPROJECT,
|
866
841
|
custom_tags=dict([("autogen", True)]),
|
867
842
|
)
|
868
|
-
@telemetry.add_stmt_params_to_df(
|
869
|
-
project=_PROJECT,
|
870
|
-
subproject=_SUBPROJECT,
|
871
|
-
custom_tags=dict([("autogen", True)]),
|
872
|
-
)
|
873
843
|
def kneighbors(
|
874
844
|
self,
|
875
845
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -929,9 +899,9 @@ class AgglomerativeClustering(BaseTransformer):
|
|
929
899
|
# For classifier, the type of predict is the same as the type of label
|
930
900
|
if self._sklearn_object._estimator_type == 'classifier':
|
931
901
|
# label columns is the desired type for output
|
932
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
902
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
933
903
|
# rename the output columns
|
934
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
904
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
935
905
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
936
906
|
([] if self._drop_input_cols else inputs)
|
937
907
|
+ outputs)
|